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“Academic” Deep Learning Setup
• Predict labels (e.g. dog or cat) from the given input (e.g. pictures). 


• Trained with many examples of inputs and labels


• Clean data => great performance!

“cat”
“cat”

“cat”

“dog”

“dog”

“dog”

“dog”



Deep Learning in the “wild”



• Practical applications require learning from noisy labels
Deep Learning in the “wild”



• Practical applications require learning from noisy labels 

• Multiple annotators of different skill levels and biases

Deep Learning in the “wild”



• Practical applications require learning from noisy labels 

• Multiple annotators of different skill levels and biases

Deep Learning in the “wild”



Deep Learning in the “wild”

“Canada Goose”

“Red-necked Grebe”

“Am. Black Duck”

David  
(bird expert)

• Practical applications require learning from noisy labels 

• Multiple annotators of different skill levels and biases



• Practical applications require learning from noisy labels 

• Multiple annotators of different skill levels and biases

“Canada Goose”

“Red-necked Grebe”

“Am. Black Duck”

David  
(bird expert)

“Canada Goose”

“Red-necked Grebe”

“Am. Black Duck”

Hannah  
(amateur bird watcher)

Deep Learning in the “wild”



“Canada Goose”

“Red-necked Grebe”

“Am. Black Duck”

David  
(bird expert)

“Canada Goose”

“Red-necked Grebe”

“Am. Black Duck”

Hannah  
(amateur bird watcher)

Alex  
(engineer)

“Bird”

“Bird”

“Bird”

• Practical applications require learning from noisy labels 

• Multiple annotators of different skill levels and biases
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• Input can also be noisy!  e.g. hard to interpret / nebulous images

• But, not the focus of this talk. 

Deep Learning in the “wild”
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• “Garbage in, garbage out” 


• Data curation is time-consuming and suboptimal 

• High inter-reader variability in radiology


• Majority vote (“Wisdom of Crowds” ) is not 
always a solution! 

Problems

(1) Expensive,   (2) Rare experts

(Watadani et al., Radilogy 2013),

(Lazarus et al., Radiology 2006),

(Warfield et al., TMI 2004),  many others

Francis Galton, 1907
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My Goal

Simultaneously model uncertainty of annotators & true label 
distribution.

David  
(bird expert)

Hannah  
(amateur bird watcher)

Alex  
(engineer)
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=> Automate data curation 


=> Improve future label acquisition 



• Multiple annotators


• At least 1 label per image


• No meta-information e.g. expert level, reviews, etc


• No “golden” data


• Task: classification

Set-up
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• “Learning From Noisy Labels By Regularized Estimation Of Annotator Confusion”, 
CVPR 2019


• An extension of “Whom to trust when everyone lies a bit”, [Rayker,  ICML 2009]


‣ Multi-class & integrates CNN as a component


‣ Simpler optimisation, amenable to sparse labels


• Models the uncertainty of each annotator with a confusion matrix. 


• Use this confusion matrix to “correct” noisy labels to learn true label distribution.

Our Model



What is a confusion matrix?
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R = no. of annotators 
N = no. of samples 
S(x) = set of available  
           labels for x 



sd

• MNIST digit classification dataset


• Ultrasound Cardiac View Classification

Experiments



Can the model curate and learn 
simultaneously? 



Experiment 1: demo on a diverse annotator group 



Name:  A+ Alice 

Accuracy: 70 % 

Characteristics:  
she whimsically assigns random 
labels 30% of the time. 
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Name:  A- Andy 

Accuracy: 60 % 

Characteristics:  
He is not very good at 
discriminating similar looking 
numbers.  

Flips labels as follows:  
1 => 7,  2 <=> 3 ,  
6 => 9, 7=>9,  9 => 8 

Experiment 1: demo on a diverse annotator group 



Name:  Solid C, Carla 

Accuracy: 50 % 

Characteristics:  
He is not very good at 
discriminating neighboring digits.  

E.g. 1 and 2, 2 and 3, etc

Experiment 1: demo on a diverse annotator group 



Name:  Failing Frank 

Accuracy: 0 % 

Characteristics:  
In his head,  
1 is 9 
2 is 8 
3 is 7 
… 
9 is 1.  

Experiment 1: demo on a diverse annotator group 



Curation Results 
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Experiment 1: demo on a diverse annotator group 

• Now train our model on labels obtained from these people …

Failing Frank
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Experiment 1: demo on a diverse annotator group 

• Confusion matrices are successfully recovered! 

Failing Frank



• Annotator accuracy are well estimated! Useful for ranking.
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Experiment 1: demo on a diverse annotator group 



Model Prediction Results 



Oracle (known confusion matrices) 
Ours 
Naive CNN  
Who Said What, Guan et al., AAAI 2018

Model Performance 
• > 99 % classification accuracy, outperforms other models. 
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When does it work (or fail)?  



Theorem (motivation for the trace term). 
If the average confusion matrix of annotators is diagonally dominant (D.D.), and the cross-entropy 
term in the loss function is zero, minimising the trace of the estimated confusion matrices uniquely 
recover the true confusion matrices.
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☺☹ ☹ ☺

When does it work (or fail)?  

Noise Level Noise Level



Is it important model individual annotators?  

Yes!



Is it important model individual annotators?  



Test on ultrasound data



Ultrasound Cardiac View Classification
• 6 classes


• 240,000 training images and 20, 000 test images


• Sparsely labelled by 9 experts + 2 engineers 


• Ground truth generated as the unanimous labels from top 3 experts



Accuracy (%)

Our method 75.57 ± 0.16 

Naive CNN 70.95 ± 0.44 

Ultrasound Cardiac View Classification
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• One model can simultaneously curate and learn from noisy data, 
performing better than the state-of-the-art in a very noisy mix of 
annotators with different skill levels.


• Successful recovery of confusion matrices, can visualise annotator 
mistakes. 


• Robust performance with sparse labels (which is cheaper)

Summary



• Account for prior knowledge e.g. expert levels  


• Model image dependence of annotators


• Trying to infer different “schools of thoughts”


• Active Learning


• Extend to other tasks e.g. structured prediction?


‣ Segmentation errors 


‣ Geometric errors e.g. misalignment


‣ Artefacts in data (e.g. PVEs, motion, etc) 

Next Steps
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Can we gauge  
the difficulty of images?
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• Make the labelling task more difficult by corrupting images

Quantifying image noise
    Noise = 0 %           Noise = 30 %                Noise = 60 %                Noise = 90 %        



• Labels are obtained from A+ Alice, A- Andy, Solid C Carl, Failing Frank


• Compare the correlation between image noise level & entropy of label distribution

Quantifying image noise

Naive softmax Logit Noise Loss Attenuation

Ours 0.72 0.83 0.77

Sukhbaatar et al., 
ICLR’15 0.80 0.81 0.85

Naive CNN 0.79 0.87 0.81


