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Abstract
The predictive performance of supervised learning algo-

rithms depends on the quality of labels. In a typical label
collection process, multiple annotators provide subjective
noisy estimates of the “truth” under the influence of their
varying skill-levels and biases. Blindly treating these noisy
labels as the ground truth limits the accuracy of learning al-
gorithms in the presence of strong disagreement. This prob-
lem is critical for applications in domains such as medical
imaging where both the annotation cost and inter-observer
variability are high. In this work, we present a method for
simultaneously learning the individual annotator model and
the underlying true label distribution, using only noisy ob-
servations. Each annotator is modeled by a confusion ma-
trix that is jointly estimated along with the classifier pre-
dictions. We propose to add a regularization term to the
loss function that encourages convergence to the true anno-
tator confusion matrix. We provide a theoretical argument
as to how the regularization is essential to our approach
both for the case of single annotator and multiple anno-
tators. Despite the simplicity of the idea, experiments on
image classification tasks with both simulated and real la-
bels show that our method either outperforms or performs
on par with the state-of-the-art methods and is capable of
estimating the skills of annotators even with a single label
available per image.

1. Introduction
In many practical applications, supervised learning algo-

rithms are trained on noisy labels obtained from multiple
annotators of varying skill levels and biases. When there is
a substantial amount of disagreement in the labels, conven-
tional training algorithms that treat such labels as the “truth”
lead to models with limited predictive performance. To
mitigate such variation, practitioners typically abide by the
principle of “wisdom of crowds” [1] and aggregate labels by
computing the majority vote. However, this approach has
limited efficacy in applications where the number of anno-
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tations is modest or the tasks are ambiguous. For example,
vision applications in medical image analysis [2] require an-
notations from clinical experts, which incur high costs and
often suffer from high inter-reader variability [3, 4, 5, 6].

However, if the exact process by which each annotator
generates the labels was known, we could correct the an-
notations accordingly and thus train our model on a cleaner
set of data. Furthermore, this additional knowledge of the
annotators’ skills can be utilized to decide on which exam-
ples to be labeled by which annotators [7, 8, 9]. Therefore,
methods that can accurately model the label noise of anno-
tators are useful for improving not only the accuracy of the
trained model, but also the quality of labels in the future.

Previous work proposed various methods for jointly esti-
mating the skills of the annotators and the ground truth (GT)
labels. We categorize these methods into two groups: (1)
two-stage approach and (2) simultaneous approach. Meth-
ods in the first category perform label aggregation and train-
ing of a supervised learning model in two separate steps.
The noisy labels Ỹ are first aggregated by building a prob-
abilistic model of annotators. The observable variables are
the noisy labels Ỹ, and the latent variables/parameters to be
estimated are the annotator skills and GT labels Y. Then, a
machine learning model is trained on the pairs of aggregated
labels Y and input examples X (e.g. images) to perform
the task of interest. The initial attempt was made in [10]
in the early 1970s and more recently, numerous lines of re-
search [11, 6, 12, 13, 14] proposed extensions of this work
e.g. by estimating the difficulty of each example. However,
in all these cases, information about the raw inputs X is
completely neglected in the generative model of noisy la-
bels used in the aggregation step, and this highly limits the
quality of estimated true labels in practice.

The simultaneous approaches [15, 16, 17, 18] address
this issue by integrating the prediction of the supervised
learning model (i.e. distribution p(Y|X)) into the proba-
bilistic model of noisy labels, and have been shown to im-
prove the predictive performance. These methods employ
variants of the expectation-maximization (EM) algorithm
during training, and require a reasonable number of labels



for each example. However, in most real world applica-
tions, it is practically prohibitive to collect a large number
of labels per example, and this requirement limits their ap-
plications. A notable exception is the Model Boostrapped
EM (MBEM) algorithm presented in [19] that is capable of
learning even with little label redundancy.

In this paper, we propose a more effective alternative to
these EM-based approaches for jointly modeling the anno-
tator skills and GT label distribution. Our method separates
the annotation noise from true labels by (1) ensuring high
fidelity with the data by minimizing the cross entropy loss
and (2) encouraging the estimated annotators to be maxi-
mally unreliable by minimizing the trace of the estimated
confusion matrices. Our method is also simpler to imple-
ment, only requiring an addition of a regularization term to
the cross-entropy loss. Furthermore, we provide a theoret-
ical result that such regularization is capable of recovering
the annotation noise as long as the average confusion matrix
(CM) over annotators is diagonally dominant.

Experiments on image classification tasks with both sim-
ulated and real noisy labels demonstrate that our method,
despite being much simpler, leads to better or compara-
ble performance with MBEM [19] and generalized EM
[15, 20], and is capable of recovering CMs even when there
is only one label available per example. We simulated a
diverse range of annotator types on MNIST and CIFAR10
data sets while we used a ultrasound dataset for cardiac view
classification to test the efficacy in a real-world application.
We also show importance of modeling individual annotators
by comparing against various modern noise-robust methods
[21, 22, 23, 24], when the inter-annotator variability is high.

Other Related Works. More broadly, our work is related
to methods for robust learning in the presence of label noise.
There is a large body of literature that do not explicitly
model individual annotators unlike our method.

The effects of label noise are well studied in common
classifiers such as SVMs and logistic regression, and ro-
bust variants have been proposed [25, 26, 27]. More re-
cently, various attempts have been made to train deep neu-
ral networks under label noise. Reed et al. [21] developed
a robust loss to model “prediction consistency”, which was
later extended by [28]. In [29] and [22], label noise was
parametrized in the form of a transition matrix and incor-
porated into neural networks for binary and multi-way clas-
sification. A more effective alternative for estimating such
transition matrix was proposed in [30], and a method for
capturing image dependency of label noise was shown in
[31]. We will later compare our model to several of these
methods to test the value of modelling individual annotators
in gaining robustness to label noise.

Multiple lines of work have shown that a small portion
of clean labels improves robustness. [32] proposed to learn
from clean labels to correct the labels of noisy examples.

[33] proposed a method for learning to weigh examples dur-
ing each training iteration by using the validation loss on
clean labels as the meta-objective. [34] employs a simi-
lar approach, but trains a separate network that proposes
weighting. However, curating a set of clean labels of suffi-
cient size is expensive for many applications, and this work
focuses on the scenario of learning from purely noisy labels.

2. Methods
We assume that a set of images {xi}Ni=1 are assigned

with noisy labels {ỹ(r)i }
r=1,...,R
i=1,...,N from multiple annotators

where ỹ(r)i denotes the label from annotator r given to ex-
ample xi, but no ground truth (GT) labels {yi}i=1,...,N

are available. In this work, we present a new pro-
cedure for multiclass classification problem that can si-
multaneously estimate the annotator noise and GT label
distribution p(y|x) from such noisy set of data D =

{xi, ỹ(1)i , ..., ỹ
(R)
i }i=1,...,N . The method only requires

adding a regularization term, that is the average accuracy
of all annotator models, to the cross-entropy loss function.
Intuitively, the method biases ours models of each annota-
tor to be as inaccurate as possible while having the model
still explain the data. We will show that this is capable of
decoupling the annotation noise from the true label distribu-
tion, as long as the average labels of the real annotators are
“sufficiently” correct (which we formalize in Sec. 2.3). For
simplicity, we first describe the method in the dense label
scenario in which each image has labels from all annota-
tors, and then extend to scenarios with missing labels where
only a subset of annotators label each image. As we shall
see later, the method works even when each image is only
labelled by a single annotator.

2.1. Noisy Observation Model
We first describe our probabilistic model of the observed

noisy labels from multiple annotators. In particular, we
make two key assumptions: (1) annotators are statistically
independent, (2) annotation noise is independent of the in-
put image. By assumption (1), the probability of observing
noisy labels {ỹ(1), ..., ỹ(R)} on image x can be written as:

p(ỹ(1), ..., ỹ(R)|x) =
R∏
r=1

∫
y∈Y

p(ỹ(r)|y, x) · p(y|x)dy (1)

where p(y|x) denotes the true label distribution of the im-
age, and p(ỹ(r)|y, x) describes the noise model by which
annotator r corrupts the ground truth label y. For clas-
sification problems, the label y takes a discrete value in
Y = {1, ..., L}. From assumption (2), the probability that
annotator r corrupts the GT label y = i to ỹ(r) = j is
independent of the image x i.e. p(ỹ(r) = j|y = i, x) =

p(ỹ(r) = j|y = i) =: a
(r)
ji . Here we refer to the associ-



Figure 1: General schematic of the model (eq. 2) in the presence of 4 annotators. Given input image x, the classifier parametrised by
θ generates an estimate of the ground truth class probabilities, pθ(x). Then, the class probabilities of respective annotators p(r)(x) :=
A(r)pθ(x) for r ∈ {1, 2, 3, 4} are computed. The model parameters {θ,A(1),A(2),A(3),A(4)} are optimized to minimize the sum of
four cross-entropy losses between each estimated annotator distribution p(r)(x) and the noisy labels ỹ(r) observed from each annotator.
The probability that each annotator provides accurate labels can be estimated by taking the average diagonal elements of the associated
confusion matrix (CM), which we refer to as the “skill level” of the annotator.

ated L×L transition matrix A(r) = (a
(r)
ji ) as the confusion

matrix (CM) of annotator r. The joint probability over the
noisy labels is simplified to:

p(ỹ(1), ..., ỹ(R)|x) =
R∏
r=1

L∑
y=1

a
(r)

ỹ(r),y
· p(y|x) (2)

Fig. 1 provides a schematic of our overall architecture,
which models the different constituents in the above joint
probability distribution. In particular, the model consists
of two components: the base classifier which estimates the
ground truth class probability vector p̂θ(x) whose ith ele-
ment approximates p(y = i|x), and the set of the CM es-
timators {Â(r)}Rr=1 which approximate {A(r)}Rr=1. Each
product p̂(r)(x) := Â(r)p̂θ(x) represents the estimated
class probability vector of the corresponding annotator. At
inference time, we use the most confident class in p̂θ(x)
as the final classification output. Next, we describe our op-
timization algorithm for jointly learning the parameters of
the base classifier, θ and the CMs, {Â(r)}Rr=1.

2.2. Joint Estimation of Confusion and True labels

Given training inputs X = {xi}Ni=1 and noisy labels
Ỹ(r) = {ỹ(r)i }Ni=1 for r = 1, ..., R, we optimize the param-
eters {θ, Â(r)} by minimizing the negative log-likelihood
(NLL), −log p(Ỹ(1), ..., Ỹ(R)|X). From eq. 2, this op-
timization objective equates to the sum of cross-entropy
losses between the observed labels and the estimated an-
notator label distributions:

−log p(Ỹ(1), ..., Ỹ(R)|X) =

N∑
i=1

R∑
r=1

CE(A(r)p̂θ(xi), ỹ
(r)
i ).

(3)
Minimizing above encourages each annotator-specific pre-

diction p̂(r)(x) := Â
(r)

p̂θ(x) to be as close as possible to
the noisy label distribution of the corresponding annotator

p(r)(x). However, this loss function alone is not capable
of separating the annotation noise from the true label dis-
tribution; there are infinite combinations of {Â(r)}Rr=1 and
classification model p̂θ such that p̂(r) perfectly matches the
annotator’s label distribution p(r) for any input x.

To formalize this problem, we denote the CM of the es-
timated true label distribution1 p̂θ by P. The CM of the
estimated annotator’s label distribution p̂(r) is then given

by the product Â
(r)

P. Minimizing the cross-entropy loss

(eq. 3) encourages Â
(r)

P to converge to the true CM of the

corresponding annotator A(r) i.e. Â
(r)

P→ A(r). However,

there are infinitely many solutions pairs (Â
(r)

, P) that sat-

isfy the equality Â
(r)

P = A(r). This means that we need to
regularize the optimization to encourage convergence to the

desired solutions i.e. Â
(r)
→ A(r) and P→ I.

To combat this problem, we propose to add the trace of
the estimated CMs to the loss in eq. 3. Extending to the
“missing labels” regime in which only a subset of annota-
tors label each example, we derive the combined loss:

N∑
i=1

R∑
r=1

1(ỹ
(r)
i ∈ S(xi))·CE(Â(r)p̂θ(xi), ỹ

(r)
i )+λ

R∑
r=1

tr(Â
(r)

)

(4)
where S(x) denotes the set of all labels available for im-
age x, and tr(A) denotes the trace of matrix A. We
simply perform gradient descent on this loss to learn
{θ, Â(1), ..., Â(R)}.

Numerous previous work have considered the same
observation model, but proposed various optimization
schemes. The original work [15, 20] employed the gen-
eralized EM algorithm to estimate {θ, Â(1), ..., Â(R)}, and
more recent work [17, 18] employed variants of hard-EM
to optimize the same model. Khetan et al.,[19] proposed a

1Pji =
∫
x∈X p(argmaxk[p̂θ(x)]k = j|y = i)p(x)dx



Figure 2: A diverse set of 4 simulated annotators on CIFAR-10. The top row shows the ground truths while the bottom row are the
estimation from our method, trained with only one label per image.

method called model-bootstrapped EM (MBEM) in which
the predictions of the base neural network classifier are used
in the M-step update of CMs to learn from singly labelled
data, which was not viable with the prior work. However,
in all of the above EM-based methods, each M-step for the
parameters of NN is not available in closed form and thus
performed via gradient descent. This means that every M-
step requires a training of the CNN classifier, rendering each
iteration of EM expensive. A naive solution to this is to per-
form only few iterations of gradient descent in each E-step,
however, this could limit the performance if sufficient con-
vergence is not achieved. Our approach directly maximizes
the likelihood with the trace regularizer and does not suffer
from these issues. In Sec. 4, we show empirically this ap-
proach leads to an improvement both in terms of accuracy
and convergence rate over the previous methods on noisy
labels with high inter-annotator variability.

2.3. Motivation for Trace Regularization

Here we intend to motivate the addition of the trace reg-
ularizer in eq. 4. In the last section, we saw that minimizing

cross-entropy loss alone encourages Â
(r)

P→ A(r). There-
fore, if we could devise a regularizer which, when mini-

mized, uniquely ensures the convergence Â
(r)
→ A(r), then

this would make P tend to the identity matrix, implying that
the base model fully captures the true label distribution i.e.
argmaxk[ ˆp(x)θ]k = y ∀x. We describe below the trace reg-
ularizer is indeed a such regularizer when both Â(r) and
A(r) satisfy some conditions. We first show this result as-
suming that there is a single annotator, and then extend to
the scenario with multiple annotators.

Lemma 1 (Single Annotator). Let P be the CM of the es-
timated true labels p̂θ and Â be the estimated CM of the
annotator. If the model matches the noisy label distribution
of the annotator i.e. ÂP = A, and both Â and A are diago-
nally dominant (aii > aij , âii > âij) for all i 6= j, then Â
with the minimal trace uniquely coincides with the true A.

Proof. We show that each diagonal element in the true CM
A forms a lower bound to the corresponding element in its
estimation.

aii =
∑
j

âijpji ≤
∑
j

âiipji = âii(
∑
j

pji) = âii (5)

for all i ∈ {1, ..., L}. It therefore follows that tr(A) ≤
tr(Â). We now show that the equality Â = A is uniquely
achieved when the trace is the smallest i.e. tr(A) = tr(Â)⇒
A = Â. From (5), if the trace of A and Â are the same,
we see that their diagonal elements also match i.e. aii =
âii∀i ∈ {1, ..., L}. Now, the non-negativity of all elements
in CMs P and Â, and the equality aii =

∑
j âijpji imply

that pji = 1[i = j] i.e. P is the identity matrix.

We note that the above result was also mentioned in [22]
in a more general context of label noise modelling (that ne-
glects annotator information). Here we further augment
their proof by showing the uniqueness of solutions (i.e.
tr(A) = tr(Â) ⇒ A = Â). In addition, the trace regu-
larization was never used in practice in [22] — for imple-
mentation reason, the Frobenius norm was used in all their
experiments. We now extend this to the multiple annota-
tor regime. We will show later that minimizing the mean
trace of all annotators indeed enhances the estimation qual-
ity of both CM and true label distributions, particularly in
the presence of high annotator disagreement.

Theorem 1 (Multiple Annotators). Let Â
(r)

be the

estimated CM of annotator r. If Â
(r)

P = A(r) for
r = 1, ..., R, and the average true and estimated CMs

A∗ := R−1
∑R
r=1 A(r) and Â

∗
:= R−1

∑R
r=1 Â

(r)

are diagonally dominant, then A(1), ...,A(R) =

argmin Â(1)
,...,Â(R)

[
tr(Â

∗
)
]

and such solutions are unique.
In other words, when the trace of the mean CM is mini-
mized, the estimation of respective annotator’s CMs match
the true values.



Proof. As the average CMs A∗ and Â
∗

are diagonally domi-
nant and we have A∗ = Â

∗
P, Lemma 1 yields that tr(A∗) ≤

tr(Â
∗
) with equality if and only if A∗ = Â

∗
. Therefore,

when the trace of the average CM of annotators is mini-
mized i.e. tr(Â

∗
) = tr(A∗), the estimated CM of the true

label distribution P reduces to identity, giving Â
(r)

= A(r)

for all r ∈ {1, ..., R}.
The above result shows that if each estimated annota-

tor’s distribution Â
(r)

p̂θ(x) is very close to the true noisy
distribution p(r)(x) (which is encouraged by minimizing
the cross-entropy loss), and on average for each class c, the
number of correctly labelled examples exceeds the number
of examples of every other class c′ that are mislabelled as c
(the mean CM is diagonally dominant), then minimizing its
trace will drive the estimates of CMs towards the true val-
ues. To encourage {Â(1), ..., Â(R)} to be also diagonally
dominant, we initialize them with identity matrices. Intu-
itively, the combination of the trace term and cross-entropy
separates the true distribution from the annotation noise by
finding the maximal amount of confusion which can explain
the noisy observations well.

3. Experiments
We now aim to verify the proposed method on various

image recognition tasks. Particularly, we demonstrate (1)
advantage of our simpler optimization scheme compared to
EM-based approaches (Sec. 3.2), (2) importance of mod-
eling multiple annotators (Sec. 3.3) and (3) the applica-
bility of the model in a challenging real world application
(Sec. 3.2). We address the first two questions by testing the
proposed method on MNIST and CIFAR-10 datasets with
a diverse set of simulated annotators. To answer the final
question, we evaluate our approach on the task of cardiac
view classification using ultrasound images where the la-
bels are noisy and sparse, and are acquired from multiple
annotators of varying levels of expertise.

3.1. Set-Up

We focus on a regime in which models have only access
to noisy labels from multiple annotators. For MNIST and
CIFAR-10 data sets, we simulate noisy labels from a range
of annotators with different skill levels and biases.

MNIST Experiments. We consider two different models
of annotator types: (i) pairwise-flipper: each annotator is
correct with probability p or flips the label of each class to
another label (the flipping target is chosen uniformly at ran-
dom for each class), (ii) hammer-spammer: each annotator
is always correct with probability p or otherwise chooses
labels uniformly at random [19]. For each annotator type
and skill level p, we create a group of 5 annotators by gen-
erating CMs from the associated distribution (illustration of

CMs are given in the supplementary material). Given the
GT labels, we generate noisy labels as defined by the CM
per annotator. These noisy labels are used during training.

CIFAR-10 Experiments. We consider a diverse group of
4 annotators with different patterns of CMs as shown in
Fig. 2: (i) is a “hammer-spammer” as defined above, (ii)
tends to mix up semantically similar categories of images
e.g. cats and dogs, and automobiles and trucks, (iii) is likely
to confuse “neighbouring” classes and (iv) is an adversarial
annotator who has a wrong association of class names to
object categories. On average, labels generated by these an-
notators are correct only 45% of the time.

In synthetic experiments, we assume that equal number
of labels are generated by each annotator on average. We
also note that all models are trained on noisy labels and
do not have access to the ground truth. Unless otherwise
stated, we hold out 10% of training images as a validation
set, on which the best performing model is selected. We
also perform no data augmentation during training. Full de-
tails of training and model architectures are provided in the
supplementary material. In Sec. 3.2 and Sec. 3.3 below, we
compare our model against two separate sets of baselines to
address different questions.

Figure 3: Comparison between our method, generalized EM,
MBEM trained on noisy labels on MNIST from “pairwise flip-
pers” for a range of mean skill level p. (a), (b) show classification
accuracy in two cases, one where all annotators label each exam-
ple and the other where only one label is available per example.
(c), (d) quantify the CM recovery error as the annotator-wise aver-
age of the normalized Frobenius norm between each ground truth
CM and its estimate. The shaded areas represent the cases where
the average CM over the annotators are not diagonally dominant.



Figure 4: Visualization of the mean CM estimates when the di-
agonal dominance (D.D.) holds (mean skill level, p = 0.3) and
does not hold (p = 0.25). In all cases, only one label is provided
per image. The numbers are rounded to nearest integers. Here
the respective models are trained on the noisy labels from 5 “pair-
wise flippers”. Note that when each image receives only 1 label,
the generalised EM [15] completely fails to recover the CM due
to the failure of M-step for updating the confusion matrices (see
Algorithm. 2 in the supplementary material).

3.2. Comparing with EM-based Approaches

This section examines the ability of our method in learn-
ing the CMs of annotators and the GT label distribution
on MNIST and CIFAR-10. In particular, we compare
against two prior methods: (1) generalized EM [20], the
first method for end-to-end training of the CM model in
the presence of multiple annotators, and (2) Model Boot-
strapped EM (MBEM) [19], the present state-of-the-art
method. We analyze the performance in two cases, one in
which all labels from 5 annotators are available for each
image (“dense labels”), and another where only one ran-
domly selected annotator labels each example (“1 label per
image”). We quantify the error of CM estimation by the
average Frobenius norm between each CM and its estimate
over the annotators, and this metric is normalized to be in
the range [0, 1] by dividing by the number of classes L i.e.
R−1L−1

∑
r

∑
i,j ||a

(r)
ij − â

(r)
ij ||2.

Performance Comparison. Fig. 3 compares the classifi-
cation accuracy and the error of CM estimation on MNIST
for a range of mean skill-levels pwhere labels are generated
by a group of 5 “pairwise-flippers”. The “oracle” model is
the idealistic scenario where CMs of the annotators are a
priori known to the model while “annotators” indicate the
average labeling accuracy of each annotator group.

Fig. 3 shows a strong correlation between the classifica-
tion accuracy and the error of CM estimation. We observe
our model displays consistently better or comparable per-
formance in terms of both classification accuracy and esti-
mation of CMs with dense labels (Fig. 3(a) and (c)). When
each example receives only one label from one of the anno-
tators, we observe the same trend as long as the mean CMs
are diagonally dominant (Fig. 3(b,d)). We also observe that
when the diagonal dominance holds, all three methods per-

Method Accuracy CM error

Our method 81.23± 0.21 0.72± 0.01
Our method (no trace norm) 80.29± 0.65 1.37± 0.12
MBEM [19] 73.33± 0.46 2.53± 0.24
generalized EM [15] 70.49± 0.23 6.13± 0.28

Single CM [22] 68.82± 2.27 -
Weighted Doctor Net [24] 60.11± 1.80 -
Soft-bootstrap [21] 54.73± 1.33 -
Vanilla CNN [21] 52.33± 0.31 -

(a) Dense labels

Method Accuracy CM error

Our method 77.65± 0.31 1.22± 0.01
Our method (no trace norm) 76.31± 0.49 1.46± 0.27
MBEM [19] 55.97± 1.23 4.58± 0.64
generalized EM [15] 53.38± 0.71 4.47± 0.64

Single CM [22] 59.91± 0.98 -
Weighted Doctor Net [24] 57.98± 0.14 -
Soft-bootstrap [21] 42.91± 1.08 -
Vanilla CNN [21] 36.04± 1.04 -

(b) 1 label per image

Table 1: Mean classification accuracy and CM estimation errors
(×10−2) on CIFAR-10 with dense labels. Average annotator ac-
curacy is 45%. Standard deviations are computed based on 3 runs
with varied weight initialization.

form better than the annotators. On the other hand, when the
diagonal dominance does not hold (see the grey regions), all
models undergo a steep drop in classification accuracy due
to the inability to estimate CMs accurately as reflected in
Fig. 3(c,d), which is consistent with Theorem. 1. Fig. 4 also
visualizes the average of the estimated CMs at this break
point. We also note that with only one label per image,
the generalized EM algorithm [15, 20] is not capable of re-
covering CMs at all and predict identity matrices (Fig. 4),
which renders the model equivalent to a vanilla classifier
directly trained on noisy labels. A similar set of results in
the “spammer-hammer” case are also available in the sup-
plementary materials.

On CIFAR-10 dataset, Tab. 1 shows that our method out-
performs MBEM and the generalized EM in terms of both
classification accuracy and CM estimation by a large mar-
gin. In addition, the standard deviations of these metrics
are generally smaller for our method than for the baselines.
Fig. 2 illustrates that our method can estimate CMs of the
4 very different annotators even when each image receives
only one label. Interestingly, Tab. 1 shows that even remov-
ing the trace norm can achieve reasonably high classifica-
tion accuracy and low CM estimation error. We believe this
is because of the unexplained robustness of a deep CNN to
label noise. Nevertheless, adding the trace norm improves
the performance, and we also observe on MNIST that such
improvement is pronounced in the presence of larger noise
(see supplementary materials).



Sensitivity to Hyper-parameters. We next study the ro-
bustness of our method against the generalized EM and
MBEM to the specification of hyper-parameters. We used
the group of five pairwise-flippers with the mean skill level
p = 0.35 to generate noisy labels on MNIST data set. For
our model, we compare the effects of the scaling λ of the
trace-norm in eq. 4 on the trajectory of classification accu-
racy on the validation set and the quality of CM estimation.
For the baselines, we experiment by varying the number of
EM steps (denoted by T ) and the number of stochastic gra-
dient descent for each E-step (denoted by G) while fixing
the total number of training iterations at 100, 000. We ob-
served our model presents robustness to different values of
λ as long as the trace-norm loss is not larger than the cross-
entropy loss (where the estimated CMs will start to diffuse
too much), and Fig. 5 shows the stability of the validation
curves for λ ∈ {0.1, 0.01, 0.001}. Both the MBEM and
generalized EM show evident dependence on the values of
T and G and by and large display slower convergence than
our method. We also observe that if too few gradient de-
scents are performed (G = 1000) during each E-step, the
model converges to a lower accuracy in both classification
and CM estimation.

Figure 5: Curves of validation accuracy during training of
our method, generalized EM and MBEM for a range of hyper-
parameters. For our method, the scaling of the trace regularizer is
varied in [0.001, 0.01, 0.1]. while, for EM and MBEM, we vary
the number of EM steps (T ), and the number of gradient descent
steps per E-step (G) while fixing the total number of training iter-
ations at 100, 000.

3.3. Value of Modelling Individual Annotators

Now, we compare the performance of our method
against the prior work that aim to improve robustness to
noisy labels without explicitly modelling the individual an-
notators. The first baseline is the vanilla classifier trained
on the majority vote labels. We also compare against the
noise robust approaches proposed in [21] and [22]. Reed et
al. [21] adds to the cross-entropy loss a label consistency
term based on the negative entropy of the softmax outputs,
and we used the default hyper-parameter β = 0.95 for com-
parison. Sukhbaatar et al. [22] explicitly accounts for the
label noise with a single CM, but does not model individual

Figure 6: Classification accuracy on MNIST of different noise-
robust models as a function of the mean annotator skill level p in
two cases. Here, for each mean skill-level p, a group of 5 “pair-
wise flippers” is formed and used to generate labels. (a). each
example receives labels from all the annotators. (b). each example
is labelled by only 1 randomly selected annotator.

annotators. We add the trace-norm of the same scaling used
in our method (λ = 0.01) to the loss function for training.
We also include Weighted Doctor Net architecture (WDN)
[24] in the comparison, a recent method that models the an-
notators individually and then learns averaging weights for
combining them. It should be noted that this model consid-
ers a different observation model of the labels and does not
explicitly model the true label distribution. When we have
access to multiple labels per example, with the exception of
WDN, we aggregated the labels by computing the majority
vote and trained all models. This is because we observed a
consistent improvement on validation accuracy (thus poses
a tougher challenge against our method) and this would be a
more realistic utilization of such data set. For both MNIST
and CIFAR-10 experiments, we test on the same set of sim-
ulated labels as used in Sec. 3.2.

Fig. 10 shows better or comparable classification accu-
racy than all the baselines when the diagonal dominance of
the mean CM holds. In particular, our methods show sig-
nificant improvement when the mean skill level of the an-
notators are relatively low (e.g. p = 0.3 and 0.35). The
results are pronounced in the case with only one label avail-
able per image for which the baseline methods undergo
a steep drop in accuracy (see Fig. 10(b)). Results in the
“spammer-hammer” case are available in the supplementary
material. Similarly on CIFAR-10 data set, Tab. 1 shows that
our method improves the classification accuracy upon the
baselines. Such improvement is pronounced in the case of
sparse labels. On the other hand, a vanilla CNN with only
L2 weight decay overfits to the training data very quickly in
the presence of such high noise.



(a) Different classes of cardiac views

(b) Skill estimation (c) Learned CMs

Method Accuracy CM error
Ours 75.57± 0.16 11.48± 0.48

w/o trace norm 70.99± 3.31 15.22± 0.94
MBEM [19] 73.91± 0.11 12.18± 0.29
WDN [24] 59.15± 1.60 -

Single-CM [22] 74.38± 0.29 -
Soft-bootstrap [21] 72.99± 0.17 -

Vanilla CNN 70.95± 0.44 -

(d) Performance comparison

Figure 7: Results on the cardiac view classification dataset: (a) illustrates examples of different cardiac view images. (b) plots the
estimated skill level of each annotator (average of the diagonal elements of its estimated CM) against the ground truth (c) compares the
estimated CMs of the two least skilled and two most skilled annotators according the GT labels (d) summarizes the classification accuracy
and error of CM estimation for different methods.

3.4. Experiments on Cardiac View Classification
Lastly, we illustrate the results of our approach for a real

data set with sparse and noisy labels from the medical do-
main. This data set consists of images of the cardiac region
in different views, acquired using a hand-held ultrasound
probe. The task is to classify a given ultrasound image into
one of six different view classes (see Fig. 7(a)). The process
of obtaining a cardiac view label is crucial for guiding the
user to the correct locations of measurements, and affects
the quality of the downstream cardiac tasks.

A committee of sonographers (with varying levels of ex-
perience) were tasked with providing the cardiac view la-
bels to a large volume of ultra-sound images, and each ex-
ample is only labelled by a subset of them. To acquire
ground truth in this setting, we chose those samples where
the three most experienced sonographers agreed on a given
label. The resulting data set consists of noisy labels pro-
vided by the remaining less experienced 6 sonographers for
a total of 240, 000 training images and 22, 000 validation
images. In addition, we also acquired labels from two non-
expert users and included in the training data.

We estimated the skill-level of each annotator by com-
puting the average value of the diagonal elements in the cor-
responding learned CM, and Fig. 7(b) shows that the group
of experts can be separated from the two non-experts with
varying levels of experinces (one is less competent than the
other). Fig. 7(c) shows that confusion between A3C and
A5C, even common among experts, can be detected (see the
result for ‘Expert 1’) while clearly capturing the patterns of
mistakes for the non-experts. In addition, Fig. 7(d) shows
that our model outperforms MBEM [19] again in classifi-
cation accuracy and the quality of CM estimation. Lastly,
the higher classification accuracy of our model with respect
to the other baseline models illustrates again that modelling
individual annotators improves robustness to label noise.

4. Discussion and Conclusion
We introduced a new theoretically grounded algorithm

for simultaneously recovering the label noise of multiple an-
notators and the ground truth label distribution. Our method
enjoys implementation simplicity, requiring only adding a
regularization term to the loss function. Experiments on
both synthetic and real data sets have shown superior per-
formance over the common EM-based methods in terms of
both classification accuracy and the quality of confusion
matrix estimation. Comparison against the other modern
noise-robust methods demonstrates that the modelling indi-
vidual annotators improves robustness to label noise. Fur-
thermore, the method is capable of estimating annotation
noise even when there is a single label per image.

Our work was primarily motivated by medical imaging
applications for which the number of classes are mostly lim-
ited to below 10. However, future work shall consider im-
posing structures on the confusion matrices to broaden up
the applicability to massively multi-class scenarios e.g. in-
troducing taxonomy based sparsity [18] and low-rank ap-
proximation. We also assumed that there is only one ground
truth for each input; this no longer holds true when the input
images are truly ambiguous—recent advances in modelling
multi-modality of label distributions [35, 36] potentially fa-
cilitate relaxation of such assumption. Another limiting as-
sumption is the image independence of the annotator’s label
noise. The majority of disagreement between annotators
arise in the difficult cases. Integrating such input depen-
dence of label noise [16, 37] is also a valuable next step.
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A. Data sets, training and architectures

Data sets. In this work, we verified our method on
three classification datasets: MNIST digit classification
dataset [38]; CIFAR-10 object recognition dataset [39];
the cardiac view classification (CVC) dataset from a
handheld ultra-sound probe. The MNIST dataset consists
of 60, 000 training and 10, 000 testing examples, all of
which are 28 × 28 grayscale images of digits from 0 to
9. The CIFAR-10 dataset consists of 50, 000 training
and 10, 000 testing examples, all of which are 32 × 32
coloured natural images drawn from 10 classes. The
CVC data set contains 26, 2000 training and 20, 000 test
examples, which are grayscale images of size 96 × 96
from 6 different cardiac views. Each image is labelled by
a subset of 8 annotators (6 sonographers and 2 non-experts).

Training. For all experiments, we employ the same
training scheme unless otherwise stated. We optimize
parameters using Adam [40] with initial learning rate of
10−3 and β = [0.9, 0.999], with minibatches of size 50
and train for 200 epochs. For our method, we set the scale
of the trace regularization to λ = 0.01. For the training
of the EM-based approaches (Model-Bootstrapped EM
[19] and generalized EM [15]), we train the base classifier
for 200 epochs in total over the course of the EM steps,
following the same protocol above. For CIFAR-10, we
performed two iterations of EM algorithm (T = 2) and 100
epochs worth of gradient descent steps during each E-step
to update the parameters of the base classifier (G = 100
epochs), following the original implementation in [19]. For
the experiments on the CVC data set, we run more rounds
of EM with T = 10 and G = 20 epochs. In all cases, we
hold out 10% of training images as a validation set and best
model is selected based on the validation accuracy over
the course of training. No data augmentation is performed
during training in all three data sets. We note that for
CIFAR-10, we, in addition, decreased the learning rate by
a factor of 10 at every multiple of 50 in a similar fashion to
the schedule used in [41, 42, 43].

Architectures. For MNIST, the base classifier was
defined as a CNN architecture comprised of 4 convolution
layers, each with 3 × 3 kernels follower by Relu. The
number of kerners in respective layers are {32, 32, 64, 64}.
After the first two convolution layers, we perform 2 × 2
max-pooling, and after the last one, we further down-
sample the features with Global Average Pooling (GAP)
prior to the final fully connected layer. For the CVC
dataset, we employed the same architecture, but with
increased number of kernels i.e. {128, 128, 128, 128}. For
CIFAR-10, we used a 50-layer ResNet [42].

B. Confusion matrices of pairwise-flippers and
hammer-spammers

For MNIST experiments, we considered two different
models of annotator types: (i) pairwise-flipper and (ii)
hammer-spammer. Example confusion matrices for both
cases are shown in Fig. 8. For each annotator type and
skill level p, we create a group of 5 annotators by generat-
ing confusion matrices (CMs) from the associated distribu-
tion. More specifically, each CM is generated by perturbing
the mean skill level p by injecting a small Gaussian noise
ε ∼ Normal(0, 0.01) and choosing the flipping target class
randomly in the case of a pairwise-flipper.

(a) Pairwise-flippers with mean skill-level p = 0.3

(b) Spammer-hammers skill-level p = 0.5

Figure 8: Examples of annotator groups. The value of di-
agonal entries are fixed constant for each annotator and is
drawn from Normal(p, 10−2).

C. Additional experiments on MNIST
We present results of experiments on MNIST where

models are trained on noisy labels from groups of 5
“hammer-spammers” for a range of mean skil level p. Fig. 9
shows a comparison of our method against other EM-based
approaches, while Fig. 10 compares our method against
other noise-robust methods without explicit modelling of
individual annotators. Our method consistently achieves
comparable or better accuracy with respect to the baselines.

D. Ablation study on trace regularization on
MNIST

We compare our method on MNIST against the case
where the trace norm regularization is removed (results on
CIFAR-10 and CVC datasets are given in the main text).
Fig. 11 shows that adding the trace norm generally improves
the performance in terms of both classification accuracy and
CM estimation error, and such improvement is pronounced
in the presence of larger noise i.e. lower skill levels of an-
notators. We also observe that when the noise level is low,
our model still attains very high accuracy even without trace
norm regularization. This can be explained by the natu-
ral robustness of the CNN classifier; if the amount of label
noise is sufficiently small, the base classifier is still capable



Figure 9: Comparison between our method, generalized
EM, MBEM trained on noisy labels on MNIST from
“hammer-spammers” for a range of mean skill level p. (a),
(b) show classification accuracy in two cases, one where
all annotators label each example and the other where only
one label is available per example. (c), (d) quantify the CM
recovery error. The shaded areas represent the cases where
the average CM over the annotators are not diagonally dom-
inant.

Figure 10: Classification accuracy on MNIST of different
noise-robust models as a function of the mean annotator
skill level p in two cases. Here, for each mean skill-level
p, a group of 5 “pairwise flippers” is formed and used to
generate labels. (a). each example receives labels from all
the annotators. (b). each example is labelled by only 1 ran-
domly selected annotator.

of learning the true label distribution well. This, in turn, al-
lows the model to separate annotation noise from true label
distribution, improving the quality of CM estimation and
thus the overall performance. However, in the presence of
large label noise, having trace-norm regularization shows
evident benefits.

Figure 11: Comparison between our method with and with-
out trace norm on MNIST. Results for two annotator groups,
consisting of “hammer-spammers” and ”pairwise-flippers”
are shown for a range of mean skill level p.

E. Pseudo-codes of our method, generalized
EM and MBEM

Here we provide pseudo-codes of our method (Algo-
rithm 1), generalized EM [15] (Algorithm 2) and model-
bootstrapped EM [19] (Algorithm 3) to clarify the differ-
ences between different methods for jointly learning the
true label distribution and confusion matrices of annota-
tors in eq. 2 in the main text. Given the training set D =

{xn, ỹ(1)n , ..., ỹ
(R)
n }Nn=1, each example may not be labelled

by all the annotators. In such cases, for ease of notation,
we assign pseudo class ỹ(r)n = −1 to fill the missing la-
bels. The comparison between these three algorithms illus-
trates the implementational simplicity of our method, de-
spite the comparable or superior performance demonstrated
on all three datasets.



Algorithm 1 Our method

Inputs: D = {xn, ỹ(1)n , ..., ỹ
(R)
n }Nn=1, λ : scale of trace regularizer

Initialize the confusion matrices {Â(r)}Rr=1 to identity matrices
Initialize the parameters of the base classifier θ
Learn θ and {Â(r)}Rr=1 by performing minibatch SGD on the combined loss:

θ, {Â(r)}Rr=1 ←− argminθ,{Â(r)}

[ N∑
i=1

R∑
r=1

1(ỹ
(r)
i 6= −1) · CE(Â(r)p̂θ(xi), ỹ

(r)
i ) + λ

R∑
r=1

tr(Â(r)
)
]

Return: p̂θ and {Â(r)}Rr=1

Algorithm 2 Generalized EM [15]

Inputs: D = {xn, ỹ(1)n , ..., ỹ
(R)
n }Nn=1, T : # EM steps, G : # SGD in each M-step

Initialize posterior distribution by the mean labels: for j = 1, ..., L, n = 1, ..., N

q
(0)
nj := p(yn = j|xn, {ỹ(r)n }r, θ(0))←− R−1

R∑
r=1

1(ỹ
(r)
i = j)

Initialize the parameters of the base classifier θ
Repeat T times:

M-step for θ. Learn the base classifier p̂θ by performing minibatch SGD for G iterations

θ(t+1) ←− argminθ
[
−

N∑
n=1

L∑
l=1

q
(t)
nj · log p(yn = l|xn, θ)

]
M-step for {Â(r)}Rr=1. Estimate the confusion matrices

â
(r),t+1
ji ←−

∑N
n=1 1(ỹ

(r)
i 6= −1) · 1(ỹ(r)n = i) · q(t)nj∑N

n=1 1(ỹ
(r)
i 6= −1) · q(t)nj

E-step. Estimate the posterior label distribution

q
(t+1)
nj ←−

p(yn = j|xn, θ(t+1)) ·
∏R
r=1

(
â
(r),t+1

jỹ
(r)
n

)
1(ỹ

(r)
i 6=−1)

∑L
l=1 p(yn = l|xn, θ(t+1)) ·

∏R
r=1

(
â
(r),t+1

lỹ
(r)
n

)
1(ỹ

(r)
i 6=−1)

Return: p̂θ(T ) and {Â(r),T }Rr=1

Algorithm 3 Model-Bootstrapped EM [19]

Inputs: D = {xn, ỹ(1)n , ..., ỹ
(R)
n }Nn=1, T : # EM steps, G : # SGD in each M-step

Initialize posterior distribution by the mean labels: for j = 1, ..., L, n = 1, ..., N

q
(0)
nj := p(yn = j|xn, {ỹ(r)n }r, θ(0))←− R−1

R∑
r=1

1(ỹ
(r)
i = j)

Initialize the parameters of the base classifier θ
Repeat T times:

M-step for θ. Learn the base classifier p̂θ by performing minibatch SGD for G iterations

θ(t+1) ←− argminθ
[
−

N∑
n=1

L∑
l=1

q
(t)
nj · log p(yn = l|xn, θ)

]
Predict on training examples. for n = 1, ..., N :

cn ←− argmaxl∈{1,...,L} p(yn = l|xn, θ(t+1))

M-step for {Â(r)}Rr=1. Estimate the confusion matrices. For i, j = 1, ..., L and r = 1, ..., R:

â
(r),t+1
ji ←−

∑N
n=1 1(ỹ

(r)
i 6= −1) · 1(ỹ(r)n = i) · 1(cn = j)∑N

n=1 1(ỹ
(r)
i 6= −1) · 1(cn = j)

Update prior label distribution. for l = 1, ..., L:
pl ←− N−1

N∑
n=1

1(cn = l)

E-step. Estimate the posterior label distribution

q
(t+1)
nj ←−

pj ·
∏R
r=1

(
â
(r),t+1

jỹ
(r)
n

)
1(ỹ

(r)
i 6=−1)

∑L
l=1 pl ·

∏R
r=1

(
â
(r),t+1

lỹ
(r)
n

)
1(ỹ

(r)
i 6=−1)

Return: p̂θ(T ) and {Â(r),T }Rr=1



F. TensorFlow codes
F.1. Probabilistic model and loss function

1 import tensorflow as tf
2

3 # inputs and annotators’ labels
4 images = tf.placeholder(tf.float32, (None, image_shape))
5 labels = tf.placeholder(tf.int32,(None, num_annotators, num_classes))
6

7 # classifier for estimating true label distribution
8 logits = classifier(images)
9

10 # confusion matrices of annotators
11 confusion_matrices = confusion_matrix_estimators(num_annotators, num_classes)
12

13 # loss function
14 # 1. weighted cross-entropy
15 weighted_cross_entropy = cross_entropy_over_annotators(labels, logits, confusion_matrices)
16

17 # 2. trace of confusion matrices:
18 trace_norm = tf.reduce_mean(tf.trace(confusion_matrices))
19

20 # final loss (eq.(4))
21 total_loss = weighted_cross_entropy + scale * trace_norm

Listing 1: Implementation of the probabilistic model and the proposed loss function given in eq. (4). The final loss is
minimized to learn jointly the confusion matrices of the respective annotators and the parameters of the classifier. The details
of the used functions are given in Sec. F.2 & F.3

F.2. Defining confusion matrices of annotators

1 import numpy as np
2 import tensorflow as tf
3

4 def confusion_matrix_estimators(num_annotators, num_classes):
5 """Defines confusion matrix estimators.
6 This function defines a set of confusion matrices that characterize respective annotators.
7 Here (i, j)th element in the annotator confusion matrix of annotator a is given by
8 P(label_annotator_a = j| label_true = i) i.e. the probability that the annotator assigns label j to

the image when the ground truth label is i.
9

10 Args:
11 num_annotators: Number of annotators
12 num_classes: Number of classes.
13

14 Returns:
15 confusion_matrices: Annotator confusion matrices. A ‘Tensor‘ of shape of shape [num_annotators,

num_classes, num_classes]
16 """
17 # initialise so the confusion matrices are close to identity matrices.
18 w_init = tf.constant(
19 np.stack([6.0 * np.eye(num_classes) - 5.0 for j in range(num_annotators)]),
20 dtype=tf.float32,
21 )
22 rho = tf.Variable(w_init, name=’rho’)
23

24 # ensure positivity
25 rho = tf.nn.softplus(rho)
26

27 # ensure each row sums to one
28 confusion_matrices = tf.divide(rho, tf.reduce_sum(rho, axis=-1, keepdims=True))
29 return confusion_matrices

Listing 2: The confusion matrices are defined as tf.Variable. The positivity of the elements of confusion matrices is
ensured by passing them through a soft-plus function.



F.3. Cross-entropy loss with sparse and noisy labels

1 import numpy as np
2 import tensorflow as tf
3

4 def cross_entropy_over_annotators(labels, logits, confusion_matrices):
5 """ Cross entropy between noisy labels from multiple annotators and their confusion matrix models.
6 Args:
7 labels: One-hot representation of labels from multiple annotators.
8 tf.Tensor of size [batch, num_annotators, num_classes]. Missing labels are assumed to be
9 represented as zero vectors.

10 logits: Logits from the classifier. tf.Tensor of size [batch, num_classes]
11 confusion_matrices: Confusion matrices of annotators. tf.Tensor of size
12 [num annotators, num_classes, num_classes]. The (i, j) th element of the confusion matrix
13 for annotator a denotes the probability P(label_annotator_a = j|label_true = i).
14 Returns:
15 The average cross-entropy across annotators and image examples.
16 """
17 # Treat one-hot labels as probability vectors
18 labels = tf.cast(labels, dtype=tf.float32)
19

20 # Sequentially compute the loss for each annotator
21 losses_all_annotators = []
22 for idx, labels_annotator in enumerate(tf.unstack(labels, axis=1)):
23 loss = sparse_confusion_matrix_softmax_cross_entropy(
24 labels=labels_annotator,
25 logits=logits,
26 confusion_matrix=confusion_matrices[idx, :, :],
27 )
28 losses_all_annotators.append(loss)
29

30 # Stack them into a tensor of size (batch, num_annotators)
31 losses_all_annotators = tf.stack(losses_all_annotators, axis=1)
32

33 # Filter out annotator networks with no labels. This allows you train
34 # annotator networks only when the labels are available.
35 has_labels = tf.reduce_sum(labels, axis=2)
36 losses_all_annotators = losses_all_annotators * has_labels
37 return tf.reduce_mean(tf.reduce_sum(losses_all_annotators, axis=1))
38

39 def sparse_confusion_matrix_softmax_cross_entropy(labels, logits, confusion_matrix):
40 """Cross entropy between noisy labels and confusion matrix based model for a single annotator.
41 Args:
42 labels: One-hot representation of labels. Tensor of size [batch, num_classes].
43 logits: Logits from the classifier. Tensor of size [batch, num_classes]
44 confusion_matrix: Confusion matrix of the annotator. Tensor of size [num_classes, num_classes].
45 Returns:
46 The average cross-entropy across annotators for image examples
47 Returns a ‘Tensor‘ of size [batch_size].
48 """
49 # get the predicted label distribution
50 preds_true = tf.nn.softmax(logits)
51

52 # Map label distribution into annotator label distribution by
53 # multiplying it by its confusion matrix.
54 preds_annotator = tf.matmul(preds_true, confusion_matrix)
55

56 # cross entropy
57 preds_clipped = tf.clip_by_value(preds_annotator, 1e-10, 0.9999999)
58 cross_entropy = tf.reduce_sum(-labels * tf.log(preds_clipped), axis=-1)
59 return cross_entropy

Listing 3: Implementation of the cross entropy loss function. Here we use zero vectors as the “one-hot” representations of
missing labels.


