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Abstract

Deep learning (DL) has shown great potential in medical image enhancement problems,
such as super-resolution or image synthesis. However, to date, most existing approaches
are based on deterministic models, neglecting the presence of different sources of uncer-
tainty in such problems. Here we introduce methods to characterise different components
of uncertainty, and demonstrate the ideas using diffusion MRI super-resolution. Specif-
ically, we propose to account for intrinsic uncertainty through a heteroscedastic noise
model and for parameter uncertainty through approximate Bayesian inference, and inte-
grate the two to quantify predictive uncertainty over the output image. Moreover, we
introduce a method to propagate the predictive uncertainty on a multi-channelled image
to derived scalar parameters, and separately quantify the effects of intrinsic and param-
eter uncertainty therein. The methods are evaluated for super-resolution of two different
signal representations of diffusion MR images—Diffusion Tensor images and Mean Appar-
ent Propagator MRI—and their derived quantities such as mean diffusivity and fractional
anisotropy, on multiple datasets of both healthy and pathological human brains. Results
highlight three key potential benefits of modelling uncertainty for improving the safety of
DL-based image enhancement systems. Firstly, modelling uncertainty improves the pre-
dictive performance even when test data departs from training data (“out-of-distribution”
datasets). Secondly, the predictive uncertainty highly correlates with reconstruction er-
rors, and is therefore capable of detecting predictive “failures”. Results on both healthy
subjects and patients with brain glioma or multiple sclerosis demonstrate that such an
uncertainty measure enables subject-specific and voxel-wise risk assessment of the super-
resolved images that can be accounted for in subsequent analysis. Thirdly, we show that
the method for decomposing predictive uncertainty into its independent sources provides
high-level “explanations” for the model performance by separately quantifying how much
uncertainty arises from the inherent difficulty of the task or the limited training examples.
The introduced concepts of uncertainty modelling extend naturally to many other imaging
modalities and data enhancement applications.
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Figure 1: Illustration of two different types of uncertainty [29]. Intrinsic uncertainty [30] quantifies
the degree of inherent ambiguity in the underlying problem. For example, in the case of super-
resolution, there exist many possible high-resolution images y that would get mapped onto the same
low-resolution input x. Intrinsic uncertainty is irreducible with training data. On the other hand, the
parameter uncertainty [31] (a subtype of model uncertainty) arises from the finite training set. There
exist more than one model that can explain the given training data equally well, and the parameter
uncertainty quantifies the ambiguity in selecting the model parameters that best captures the target
data-generating process. As illustrated in the figure on the right, parameter uncertainty decreases with
more data; the green line shows the target function, the red line is the estimated mean, and the shaded
region signifies the associated parameter uncertainty (standard deviation), which is higher in regions
where we have fewer observations.

1 Introduction
In the last few years, deep learning techniques have permeated the field of medical image
processing [1,2]. Beyond the automation of existing radiological tasks— e.g. segmentation [3],
detection [4], disease grading and classification [5]—deep learning has been applied to a diverse
set of “data enhancement” problems. Data enhancement aims to improve the quality, the
information content1, or the quantity of medical images available for research and clinics by
transforming images from one domain to another [6]. Previous research has shown the efficacy
of data enhancement in different forms such as super-resolution [7–9], image synthesis [10, 11],
denoising [12, 13], data harmonisation [14, 15] across scanners and protocols, reconstruction
[16–22], registration [23, 24] and quality control [25, 26]. These advances have the potential
not only to enhance the quality and efficiency of radiological care, but also facilitate scientific
discoveries in medical research through increased volume and content of usable data.

However, most efforts in the development of data enhancement techniques have focused on
improving the accuracy of deep learning algorithms, with little consideration of risk manage-
ment. Blindly trusting the output of a given machine learning tool risks undetected failures e.g.
spurious features and removal of structures [27]. In medical applications, images inform scien-
tific conclusions in research, and diagnostic, prognostic and interventional decisions in clinics.
Therefore, translation of current proofs of principle to such safety-critical applications demands
mechanisms for quantifying the risks of failures i.e. deriving uncertainty/confidence measures
and explanation of their sources [28].

Predictive failures of deep learning systems, by and large, occur due to two reasons: i)
the task itself is inherently ambiguous or ii) the learned model is not adequate to describe
the data [29, 32–34], as illustrated in Fig. 1. The former stems from intrinsic uncertainty
[30], which describes ambiguity in the underlying data generating process (e.g. presence of

1Typically done by transferring information from an external source (e.g., training data).
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stochasticity such as measurement noise and intrinsic ill-posed nature of the problem), and
cannot be alleviated by increasing available training data or model complexity2. The latter
is characterised by model uncertainty [31], which describes ambiguity in model specification3.
Model uncertainty arises from a) parameter uncertainty : ambiguity in fitting the model to
the target mapping due to limited training data, or b) model bias : errors due to insufficient
flexibility of the model class (e.g. fitting a linear model to a sinusoidal process). These types
of uncertainty can be reduced by collecting more data or specifying a different class of models.
With the expressivity of deep neural networks, which are known to be universal approximators
[35] if sufficiently large, one might reasonably assume that the model bias is small enough
to be discounted. Under this assumption, intrinsic and parameter uncertainty (Fig. 1) fully
characterise the predictive failures of deep learning models. Therefore, accurate estimation of
these uncertainties are needed and would potentially allow practioners to understand better
the limits of the models, flag doubtful predictions, and highlight test cases that are not well
represented in the training data.

In this work, we introduce methods for modelling components of uncertainty in medical
image enhancement systems based on deep learning. We propose to model intrinsic uncer-
tainty through a input-dependent (heteroscedastic) noise model [36] and parameter uncertainty
through variational dropout [37]. We then combine and propagate these two “source” uncer-
tainties into a spatial map of predictive uncertainty over the output image, which can be used
to assess the output reliability on subject-specific and voxel-wise basis. Lastly, we propose a
method to propagate the predictive uncertainty to arbitrary derived quantities of the output
images, such as scalar indices that are commonly used for subsequent analysis, and decom-
pose it into distinct components which separately quantify the contributions of intrinsic and
parameter uncertainty.

The primary goal of this work is to evaluate the practical utility of the proposed methods for
modelling uncertainty in terms of three aspects; i) performance on unseen datasets, including
generalisation to out-of-distribution data and robustness to noise/outliers; ii) safety assessment
of system output; iii) explainability of failures. We note here that validating the “correctness”
of the derived uncertainty estimates is an important fundamental problem, that is not the main
focus of this work — a very challenging task as the ground truth is typically unknown. Here
we take a pragmatic approach and focus our study on how useful, rather than how accurate,
uncertainty modelling is in the context of medical image enhancement applications. To this
end, we use Image Quality Transfer (IQT) [38–41] as the core test ground4, focusing on its
application to super-resolution of diffusion magnetic resonance imaging (dMRI) scans. For two
different types of diffusion signal representations, we evaluate the effects of uncertainty modeling
on generalisation by measuring the predictive accuracy on unseen test subjects in the Human
Connectome Project (HCP) dataset [42] and the Lifespan dataset [43]. We additionally test
the value of improved predictive performance in a downstream tractography application. We
then test the capability of the predictive uncertainty map to indicate predictive errors and thus
to detect potential failures on images of both healthy subjects and those in which pathologies
unseen in the training data arise, specifically from glioma and multiple-sclerosis (MS) patients.
Lastly, we perform the decomposition of predictive uncertainty on HCP subjects with benign
abnormalities, and assess its potential value in gaining high-level interpretations of predictive
performance.

2Intrinsic uncertainty is also known as aleaotoric or statistical uncertainty.
3Model uncertainty is a subclass of epistemic uncertainty [29] which encompasses types of uncertainties that

arise from lack of knowledge.
4IQT is a data-enhancement framework for propagating information from rare or expensive high quality

images to lower quality but more readily available images

3



2 Related Works
This section provides a review of related works under several different themes. We first review
the development of learning-based image enhancement methods in medical imaging applica-
tions. We then discuss the recent advances made to model and quantify uncertainty in such
image enhancement problems. Lastly, we describe the existing strands of research in uncertainty
modelling for other medical imaging problems and fields of applications.

Various forms of image enhancement can be cast as image transformation problems where
the input image from one domain is mapped to an output image from another domain. Nu-
merous recent methods have proposed to perform image transformation tasks as supervised
regression of low quality against high quality image content. Alexander et al. [38] proposed
Image Quality Transfer (IQT), a general framework for supervised quality enhancement of
medical images. They demonstrated the efficacy of their method through a random forest
(RF) implementation of super-resolution (SR) of brain diffusion tensor images and estimation
of advanced microstructure parameter maps from sparse measurements. More recently, deep
learning, typically in the form of convolutional neural networks (CNNs), has shown additional
promise in this kind of task. For example, Oktay et al. [7] proposed a CNN model to upsample
a stack of 2D MRI cardiac volumes in the through-plane direction, where the SR mapping is
learnt from 3D cardiac volumes of nearly isotropic voxels. This work was later extended by [44]
with the addition of global anatomical prior based on auto-encoder. Zhao et al. [45] proposed
a solution to the same SR problem for brains that utilises the high frequency information in in-
plane slices to super-resolve in the through-plane direction without requiring external training
data. In addition, a range of different architectures of CNNs have been considered for SR of
other modalities and anatomical structures such as structural MRI [8] of brains, retinal fundus
images [46] and computer tomography (CT) scans of chest [47]. Another problem of growing
interest is image synthesis, which aims to synthesise an image of a different modality given the
input image. Nie et al. [48] employed a conditional generative adversarial network to synthesise
CT from MRI with fine texture details whilst Wolterink et al. [49] extended this idea using
a CycleGAN [50] to leverage the abundance of unpaired training sets of CT and MR scans.
In [51], a variant of CNN was applied to predict 7T images from 3T MRI, where both contrast
and resolution are enhanced. Another notable application is the harmonisation of diffusion
MRIs [14,15,41,52] where images acquired at different scanners or magnetic field strengths are
mapped to the common reference image space to allow for joint analysis.

Despite this advancement, all of these methods commit to a single prediction and lack a
mechanism to communicate uncertainty in the output image. In medical applications where im-
ages can ultimately inform life-and-death decisions, quantifying reliability of output is crucial.
Tanno et al. [39] aimed to address this problem for supervised image enhancement for the first
time by proposing a Bayesian variant of random forests to quantify uncertainty over predicted
high-resolution MRI. They showed that the uncertainty measure correlates well with the accu-
racy and can highlight abnormality not represented in the training data. In our preliminary
work [33], we made an initial attempt to extend this approach with probabilistic deep-learning
formulation, and showed that modelling different components of uncertainty—intrinsic and pa-
rameter uncertainty—allows one to build a more generalisable model and quantify predictive
confidence. Kendall et al. [34] concurrently investigated the same problem in computer vision,
suggesting its utility for safety-critical applications such as self-driving cars. More recently, Hu
et al. [53] extended these works in the context of medical image segmentation and proposed
a mechanism to learn the intrinsic uncertainty in a supervised manner, when multiple labels
are available. Dalca et al. [54] proposed a CNN-based probabilistic model for diffeomorphic
image registration with a learning algorithm based on variational inference, and demonstrated
the state-of-the-art registration accuracy on established benchmarks while providing estimates
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of registration uncertainty. An alternative approach is ensembling where the variance of the
predictions of multiple networks is used to quantify the predictive uncertainty [55]. Schlemper
et al. [56] proposed a novel combination of the cascaded CNN architecture and compressive
sensing, equipped with a variant of ensemble techniques, which enabled robust reconstruction
of highly undersampled cardiovascular diffusion MR images, and quantification of reconstruc-
tion uncertainty. Bragman et al. [57] studied the value of uncertainty modelling for multi-task
learning in the context of MR-only radiotherapy treatment planning where the synthetic CT
image and the segmentation of organs at risk are simultaneously predicted from the input MRI
image.

We should also note that, although not the focus of this work, research on uncertainty
modelling in deep learning techniques extend to other medical image processing tasks beyond
data enhancement, such as segmentation, detection and classification. For example, Nair et al.,
[58,59] demonstrated for lesion segmentation of multiple sclerosis that the voxel-wise uncertainty
metrics can be used for quality control; by filtering out predictions with high uncertainty, the
model could achieve higher lesion detection accuracy. A concurrent work by Eaton-Rosen
et al. [60] showed for the task of brain tumour segmentation that the Monte Carlo (MC)
sample variance from dropout [61] can be calibrated to provide meaningful error bars over
estimates of tumour volumes. Similarly, [62] introduced ways to turn voxel-wise uncertainty
score into structure-wise uncertainty metrics for brain parcellation task, and showed their values
in performing more reliable group analysis. The uncertainty metric based on MC dropout has
also shown promise in disease grading of retinal fundal images [63, 64], and more recently an
extension based on test-time augmentation was introduced by [65]. An alternative approach to
these works is to train a model that predicts the uncertainty score directly; [67] showed that this
approach is more effective when opinions from multiple experts are available for each image. In
a similar vein, [66] proposed a means to estimate confidence intervals of any desired percentiles
based on quantile regression, and tailored it to the task of counting objects in an given image
with successful demonstration in estimating uncertainty over the measurements of different
biomarkers such as histopathological cell counting and white matter hyperintensity counting.
Kohl et al. [68] and Baumgartner et al. [69] proposed methods to generate a set of diverse
and plausible segmentation proposals on a given image, capturing more realistically the high
inter-reader annotation variability, which is commonly observed in medical image segmentation
tasks. Lastly, [70, 71] demonstrated for the classification of mammograms and cardiac ultra-
sound images, respectively that modelling uncertainty of human annotators enables robust
learning from noisy labels in the presence of large disagreement.

However, within the context of medical image enhancement, these lines of research per-
formed only limited validation of the quality and utility of uncertainty modelling. In this work,
we formalise and extend the preliminary ideas in Tanno et al. [33] and provide a comprehen-
sive set of experiments to evaluate the proposed uncertainty modelling techniques in a diverse
set of datasets, which vary in demographics, scanner types, acquisition protocols or pathology.
Our proposed framework models different components of uncertainty, namely intrinsic and pa-
rameter uncertainty, and provides conclusive evidence that this improves performance thanks
to different regularisation effects. In addition, we propose a method to decompose predictive
uncertainty over an arbitrary function of the output image (e.g. morphological measurements)
into its sources, in order to provide a high-level explanation of model performance on the given
input.

3 Methods
This section describes the methods for modelling different components of uncertainty that
arise in data enhancement. Firstly, we provide an overview of Image Quality Transfer (IQT)
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which formulates data enhancement as a supervised learning problem. Secondly, using the IQT
framework, we introduce methods to model intrinsic and parameter uncertainty, separately,
focusing on the application of super-resolution. We then combine the two approaches and
estimate the overall uncertainty over prediction (predictive uncertainty) by approximating the
variance of the predictive distribution (eq. (9)). Lastly, we propose a method for decomposing
predictive uncertainty into its sources—intrinsic and parameter uncertainty—in an attempt to
provide quantifiable explanations for the confidence on model output (eq. (13)).

3.1 Background: Image Quality Transfer

Alexander et al. [38] proposed Image Quality Transfer (IQT), the first supervised learning
based framework for data enhancement of medical images, and here we survey its general
formulation which forms the testing ground of this work. IQT performs data enhancement via
regression of low quality against high quality image content. In order to overcome the memory
demands of processing 3-dimensional medical images, along with other subsequent work such
as [7, 44, 51, 72], IQT assumes factorisability over local neighbourhoods (also called patches)
and models the conditional distribution of high-quality image IHigh given the corresponding
low-quality input ILow as:

p(IHigh|ILow) =
∏
i∈S

p(yi|xi) (1)

where {yi}i∈S is a set of disjoint high-quality subvolumes with S denoting the set of their indices,
which together constitute the whole image IHigh, while {xi}i∈S is a set of potentially overlapping
low-quality subvolumes, each of which contains and is spatially larger than the corresponding yi,
as illustrated in Fig. 2. In other words, here we assume that the high-resolution neighbourhoods
are statistically independent given the corresponding low-resolution versions. We define each
local neighbourhood as a cubic sub-volume. The locality assumption reduces the problem
of learning p(IHigh|ILow) to the much less memory intensive problem of learning p(y|x). In
other words, IQT formulates the data enhancement task as a patch-wise regression where an
input low-quality image ILow is split into smaller overlapping sub-volumes {xi}i∈S and the
corresponding non-overlapping high-quality sub-volumes {yi}i∈S are independently predicted
according to the patch regressor p(y|x). The final prediction for the 3D high-quality volume
Ihigh is constructed by tesellating the output patches {yi}i∈S .

The original implementation of IQT [38–40] employed a variant of random forests (RFs) to
model p(y|x) while more recent [7, 44, 51, 72] approaches use variants of convolutional neural
networks (CNNs). Either way, the machine learning algorithm is trained on pairs of high-quality
and low-quality patches D = {(xi,yi)}Ni=1 extracted from a set of image volumes, and is used to
perform the data-enhancement task of interest. Typically, such patch pairs D are synthesised
by down-sampling a collection of high quality images to approximate their counterparts in a
particular low-quality scenario [7, 38]. In this work, we focus on the task of super-resolution
(SR) where the spatial resolution of Ihigh is higher than the input image Ilow.

3.2 Baseline Super-Resolution Model: 3D-ESPCN

As the baseline architecture for modelling p(y|x), we adapt efficient subpixel-shifted convo-
lutional network (ESPCN) [73] to 3D data. ESPCN is a recently proposed method with the
capacity to perform real-time per-frame SR of videos while retaining high accuracy on 2D nat-
ural images. We have chosen to base on this architecture for its simplicity and computational
performance. Most CNN-based SR techniques first up-sample a low-resolution input image (e.g.
through bilinear interpolation [74], deconvolution [7,75], fractional-strided convolution [76], etc)
and then refine the high-resolution estimate through a series of convolutions. These methods
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Figure 2: Illustration of the patch-wise regression in super-resolution application. The conditional
distribution over the high quality image p(IHigh|ILow) is assumed to factorise over local neighbourhoods
{(xi,yi)}i. In this case, for each input subvolume xi (in yellow), the high resolution version of the
smaller centrally located neighbourhood, yi (in orange) is regressed.

suffer from the fact that (1) the up-sampling can be a lossy process and (2) refinement in the
high-resolution space has a higher computational cost than in the low-resolution space. By
contrast, ESPCN performs convolutions in the low-resolution-space, upsampling afterwards.
The reduced resolution of feature maps dramatically decreases the computational and memory
costs, which is more pronounced in processing 3D data.

More specifically the ESPCN is a fully convolutional network, with a special shuffling opera-
tion on the output, which identifies individual feature channel dimensions with spatial locations
in the high-resolution output. Fig. 3 shows a 2D illustration of an example ESPCN when the
fully convolutional part of the network consists of 3 convolutional layers, each followed by a
ReLU, and the final layer has cr2 feature maps where r is the upsampling rate and c is the
number of channels in the output image (e.g. 6 in the case of DT images). The shuffling op-
eration takes the feature maps of shape h× w × cr2 and remaps pixels from different channels
into different spatial locations in the high-resolution output, producing a rh × rw × c image,
where h and w denote height and width of the pre-shuffling feature maps. This shuffling op-
eration in 3D is given by S(F )i,j,k,c = F[i/r],[j/r],[k/r],(r3−1)c+mod(i,r)+r ·mod(j,r)+r3 ·mod(k,r) where F
is the pre-shuffled feature maps. The combined effects of the last convolution and shuffling is
effectively a learned interpolation, and an efficient implementation of deconvolution layer [77]
where the kernel size is divisible by the size of the stride [73]. Therefore, it is less susceptible
to checker-board like artifacts commonly observed with deconvolution operations [78].

At test time, the prediction of higher resolution volume is performed through shift-and-stitch
operation. The network takes each subvolume x in a low-resolution image, and predicts the
corresponding high-resolution sub-volume y. By tessellating the predictions from appropriately
shifted inputs x, the whole high-resolution volume is reconstructed. With convolutions being
local operations, each output voxel is only inferred from a local region in the input volume,
and the spatial extent of this local connectivity is referred to as the receptive field. For a given
input subvolume, the network increases the resolution of the central voxel of each receptive
field e.g. the central 23 output voxels are estimated from the corresponding 53 receptive field
in the input volume, as coloured yellow in Fig. 3.

Given training pairs of high-resolution and low-resolution patches D = {(xi,yi)}Ni=1, we
optimise the network parameters by minimising the sum of per-pixel mean-squared-error (MSE)
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Figure 3: 2D illustration of an example baseline network (ESPCN [73]) with upsampling rate, r = 2.
The receptive field of the central 22 pixels in the output patch is 52 pixels in the input patch and is
shown in yellow. The shuffling operation at the end periodically rearranges the final feature maps from
the low-resolution space into the high-resolution space.

between the ground truth y and the predicted high-resolution patch µθ(x) over the training
set. Here θ denotes all network parameters. This is equivalent to minimising the negative
log likelihood (NLL) under the Gaussian noise model p(y|x, θ) = N (y;µθ(x), σ2I) with fixed
isotropic variance σ2.

3.3 Intrinsic Uncertainty and Heteroscedastic Noise Model

Intrinsic uncertainty quantifies the inherent ambiguity of the underlying problem that is irre-
ducible with data as illustrated in Fig. 1(i). Here we capture intrinsic uncertainty by estimating
the variance of the target conditional distribution p(y|x, θ). In medical images, intrinsic un-
certainty is often spatially and channel-wise varying. For example, super-resolution could be
fundamentally harder on some anatomical structures than others due to signal variability as
shown in [39]. It may also be the case that some channels of the image volume might contain
more complex, non-linear and noisy signals than other channels e.g. higher order terms in
diffusion signal representations. To capture such potential variation of intrinsic uncertainty, we
model p(y|x, θ) as a Gaussian distribution with input-dependent varying variance:

p(y|x, θ1, θ2) = N
(
y;µ(x; θ1),Σ(x; θ2)

)
=

exp
((

y − µ(x; θ1)
)T

Σ−1(x; θ2)
(
y − µ(x; θ1)

))√
(2π)dim(y) · det Σ(x; θ2)

(2)

where the mean µ(x; θ1) and the covariance Σ(x; θ2) are functions of input x and modelled
by two separate 3D-ESPCNs (as shown in Fig. 4), which we refer to as “mean network” and
“covariance network”, and are parametrised by θ1 and θ2, respectively. Here dim(y) denotes the
dimension of the output patch y. We note that the input patch x varies spatially, which makes
the estimated variance spatially varying and different for respective channels. Fig. 4 shows a 2D
illustration of our 3D architecture. For each low-resolution input patch x, we use the output
of the mean network µ(x; θ1) at the top as the final estimate of the high-resolution ground
truth y whilst the diagonal elements of the covariance Σ(x; θ2) quantify the corresponding
intrinsic uncertainty over individual components in µ(x; θ1) and over different channels. Lastly,
we note that this is a specifc instance of a broad class of models, called heteroscedastic noise
models [36,79] where the variance is a function of the value of the input. In contrast, the baseline
3D-ESPCN can be viewed as an example of homoscedastic noise models with y = µθ(x) + σε,
ε ∼ N (0, I) with constant variance σ2 across all spatial locations and image channels, which is
highly unrealistic in most medical images.

We jointly optimise the parameters θ = {θ1, θ2} of the mean network and the covariance
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Figure 4: 2D illustration of the proposed dual-path architecture which estimates the mean and
diagonal covariance of the Gaussian conditional distributions as functions of the input low-resolution
subvolume x. The “mean network” µ( · ) at the top generates the high-resolution prediction, while
the “covariance network” Σ( · ) at the bottom estimates the corresponding covariance matrix at the
selected location in the volume. The diagonal entries of the covariance are used to quantify the
intrinsic uncertainty. The parameters of both networks are learned by minimising the common loss
function (eq. (5)).

network by minimising the negative loglikelihood (NLL)5:

Lθ(D) =
∑

(xi,yi)∈D

−log p(y|x, θ1, θ2) (3)

=
∑

(xi,yi)∈D

−log N
(
yi;µ(xi; θ1),Σ(xi; θ2)

)
(4)

=Mθ(D) +Hθ(D) + c (5)

where c is a constant and the remaining terms are given by

Mθ(D) =
1

N

N∑
i=1

(
yi−µ(xi; θ1)

)T
Σ−1(xi; θ2)

(
yi−µ(xi; θ1)

)
, Hθ(D) =

1

N

N∑
i=1

log det Σ(xi; θ2).

Here Mθ(D) denotes the mean squared Mahalanobis distance with respect to the predictive
distribution p(y|x, θ). For simplicity, in this work we assume diagonality of the covariance
matrix Σ(x; θ2). This means that the Mahalanobis distance termMθ(D) equates to the sum of
MSEs across all pixels and channels in the output, weighted by the inverse of the corresponding
variance (estimated intrinsic uncertainty)6. This term naturally encourages assigning high
uncertainty to regions with higher MSEs, robustifying the training to noisy labels and outliers.
On other other hand,Hθ(D) represents the mean differential entropy and discourages the spread
of Σθ2(x) from growing too large. We note that the covariance network is used to modulate
the training of the mean network and quantify intrinsic uncertainty during inference while
only the mean network generates the final prediction, requiring a single 3D-ESPCN to perform
super-resolution.

5One may wonder how it is possible to estimate the heteroscedastic variance when you observe only one
possible output patch y for each input x in the training data. Here we are assuming that the conditional
distribution p(y|x, θ) is locally “smooth”; if two input low-res patches are similar x1 ≈ x2, then we should also
have p(y|x1, θ) ≈ p(y|x2, θ). Therefore, intuitively speaking, by minimizing the negative log-likelihood eq. (5),
the model estimates the mean and the variance of the conditional distribution for each x based on the output
labels of other similar input samples.

6In the case of full covariance,Mθ(D) becomes the MSE in the basis of principle components, weighted by
the corresponding eigenvalues.
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3.4 Parameter Uncertainty and Variational Dropout

Parameter uncertainty signifies the ambiguity in selecting the parameters of the model that
best describes the training data as illustrated in Fig. 1.(ii). The limitation of the previously
introduced 3D-ESPCN baseline (Sec. 3.2) and its heteroscedastic extension (Sec. 3.3) is their
reliance on a single estimate of network parameters. In many medical imaging problems, the
amount of training data is modest; in such cases, this point estimate approach increases the
risk of overfitting [61].

We combat this problem with a Bayesian approach. Specifically, instead of resorting to a
single network of fixed parameters, we consider the (posterior) distribution over all the possible
settings of network parameters given training data p(θ|D). This probability density encapsu-
lates the parameter uncertainty, with its spread of mass describing the ambiguity in selecting
most appropriate models to explain the training data D. However, in practice, the posterior
p(θ|D) is intractable due to the difficulty in computing the normalisation constant. We, there-
fore, propose to approximate p(θ|D) with a simpler distribution qφ(θ) [80]. Specifically, we
adapt a technique called variational dropout [37] to convolution operations from its original
version introduced for feedforward NNs.

Binary dropout [81] is a popular choice of method for approximating posterior distributions
[61] with demonstrated utility in medical imaging applications [57, 58, 60, 62–64, 72]. However,
typically hyper-parameters (dropout rates) need to be pre-set before the training, requiring
inefficient cross-validation and thus substantially constraining the flexibility of approximate
distribution family qφ( · ) (often a fixed dropout rate per layer). This limitation motivates us
to use variational dropout [37] that extends such approach with a way to learn the dropout
rate from data for every single weight in the network and theoretically enables a more effective
approximation of the posterior distribution. Another established class of methods is stochastic
gradient Markov chain Monte Carlo (SG-MCMC) method [82–85]. However, in this work, we do
not not consider SG-MCMC methods because they remain, although unbiased, computationally
inefficient due to the requirement of evaluating an ensemble of models for posterior computation,
and are slow to converge for high-dimensional problems.

Variational dropout [37] employs a form of variational inference to approximate the pos-
terior p(θ|D) by a member of tractable family of distributions qφ(θ) =

∏
ij N (θij; ηij, αijη

2
ij)

parametrised by φ = {ηij, αij}ij, such that Kullback-Leibler (KL) divergence KL
(
qφ(θ)||p(θ|D)

)
is minimised. Here, θij denotes an individual element in the convolution filters of CNNs as a
random variable with parameters αij(dropout rate) and ηij (mean), and the posterior over the
set of all weights is effectively approximated with a product of univariate Gaussian distribu-
tions. In practice, introducing a prior p(θ) and applying Bayes’ rule allow us to rewrite the
minimization of the KL divergence as maximization of the quantity known as the evidence lower
bound (ELBO) [80]. Here during training, we learn the variational parameters φ = {ηij, αij}ij
by minimizing the negative ELBO (to be consistent with the NLL cost function in eq.(3)):

Lφ(D) =
∑

(xi,yi)∈D

(
Eqφ(θ)[−log p(yi|xi, θ)] + KL(qφ(θ)||p(θ))

)
(6)

An accurate approximation for the KL term for log-uniform prior p(θ) is proposed in [86], which
is employed here. On the other hand, the first term (referred to as the reconstruction term)
cannot be computed exactly, thus we employ the following MC approximation by sampling S
samples of network parameters from the posterior:

Eqφ(θ)[−log p(y|x, θ)] ≈
1

S

S∑
s=1

−log p(y|x, θ(s)), θ(s) ∼ qφ(θ) (7)

Adapting the local reparametrisation trick presented in [37] to a convolution operation, we
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derive the implementation of posterior sampling θ(s) ∼ qφ(θ) such that the variance of gradients
over each mini-batch is low 7. In practice, this amounts to replacing each standard convolution
kernel with a “Bayesian” convolution, which proceeds as follows. Firstly, we define two separate
convolution kernels: η ∈ Rc×k2 (“mean” kernels) and α� η2 ∈ Rc×k2 (“variance” kernels) where
� denotes the element-wise multiplication, c is the number of input channel and k is the kernel
width. Input feature maps Fin and its elementwise squared values are convolved by respective
kernels to compute the “mean” and “variance” of the output feature maps µY =∆ Fin ∗ η and
σ2
Y =∆ F 2

in ∗ (α � η2). Lastly, the final output feature maps Fout are computed by drawing a
sample from N (µY , σ

2
Y ) i.e. computing the following quantity:

Fout =∆ µY + σY � ε, ε ∼ N (0, I). (8)

Every forward pass (i.e. computation of each p(y|x, θ(s))) with variational dropout is thus
performed via a sequence of Bayesian convolutions. Since the injected Gaussian noise ε is
independent of the variational parameters φ = {ηij, αij}ij, the approximate reconstruction
term in eq. 7 is differentiable with respect to them [87].

3.5 Joint Modelling of Intrinsic and Parameter Uncertainty

We now describe how to combine the methods for modelling intrinsic and parameter uncertainty.
Operationally, we take the dual architecture (Fig. 4) used to model intrinsic uncertainty, and
apply variational dropout to every convolution layer in it. The intrinsic uncertainty is modelled
in the heteroscedastic Gaussian model p(y|x, θ1, θ2) = N

(
y;µ(x; θ1),Σ(x; θ2)

)
while the param-

eter uncertainty is captured in the approximate posterior qφ(θ1, θ2) ≈ p(θ1, θ2|D) obtained from
variational dropout.

At test time, for each low-resolution input subvolume x, we would like to compute the
predictive distribution p(y|x,D) over the high-resolution output y. We approximate this
quantity by q∗φ(y|x) by taking the “average” of all possible network predictions p(y|x, θ) =

N
(
y;µ(x; θ1),Σ(x; θ2)

)
from all settings of the parameters θ1, θ2, weighted by the associated

approximate posterior distribution qφ(θ1, θ2). More formally, we need to compute the integral
below:

q∗φ(y|x) =∆
∫
N (y;µ(x; θ1),Σ(x; θ2)))︸ ︷︷ ︸

Network prediction

· qφ(θ1, θ2)︸ ︷︷ ︸
Approx. posterior

dθ1dθ2 (9)

≈
∫
p(y|x, θ1, θ2) · p(θ1, θ2|D)dθ1dθ2 = p(y|x,D) (10)

where the last line represents the true predictive distribution p(y|x,D) which is estimated by
our model q∗φ(y|x). However, in practice, the integral q∗φ(y|x) cannot be evaluated in closed
form because the likelihood N

(
y;µ(x; θ1),Σ(x; θ2)

)
is a highly non-linear function of input x

as given in eq. 2. At test time, we therefore estimate, for each input x, the mean and covariance
of the approximate predictive distribution q∗φ(y|x) with the unbiased Monte Carlo estimators:

µ̂y|x =∆
1

T

T∑
t=1

µ(x; θt1) −−−→
T→∞

Eq∗φ(y|x)[y] (11)

Σ̂y|x =∆
1

T

T∑
t=1

(
Σ(x; θt2) + µ(x; θt1)µ(x; θt1)

T
)
− µ̂y|xµ̂

T
y|x −−−→

T→∞
covq∗φ(y|x)[y,y] (12)

where {(θt1, θt2)}Tt=1 are samples of the network parameters (i.e. convolution kernels) drawn
from the approximate posterior qφ(θ1, θ2). In other words, the inference performs T stochastic

7See the proof for feedforward networks given in [37] which generalises to convolutions.

11



Figure 5: 2D illustration of a heteroscedastic network with variational dropout. Diagonal covariance
is again assumed. The top 3D-ESPCN estimates the mean and the bottom one estimates the covariance
matrix of the likelihood. Variational dropout is applied to feature maps after every convolution where
Gaussian noise is injected into feature maps Fout = µY + σY � ε where ε ∼ N (0, I) (see eq. 8).

forward passes at test time by injecting noise into features according to eq. 8, and amalgamates
the corresponding network outputs to compute the sample mean µ̂y|x and sample covariance
Σ̂y|x. We use the sample mean µ̂y|x as the final prediction of an high-resolution ouput patch
y and use the diagonal elements of the sample covariance Σ̂y|x to quantify the corresponding
uncertainty, which we refer to as predictive mean and predictive uncertainty, respectively.

3.6 Uncertainty Decomposition and Propagation

Predictive uncertainty arises from the combination of two source effects, namely intrinsic and
parameter uncertainty, for which we have previously introduced methods for estimation. Lastly,
we introduce a method based on variance decomposition for disentangling these effects and
quantifying their contributions separately in predictive uncertainty. We consider such decom-
position problem in the presence of an arbitrary transformation of the output variable y.

The users of super-resolution algorithms are often interested in the quantities that are de-
rived from the predicted high-resolution images, rather than the images themselves. For exam-
ple, quantities such as the principal direction (first eigenvalue of the DT), mean diffusivity (MD)
and fractional anisotropy (FA) are typically calculated from diffusion tensor images (DTIs) and
used in the downstream analysis. We therefore consider an generic function8 g : Y → Rm which
transforms the high-resolution multi-channel data y to a quantity of interest of dimension m
e.g. MD and FA maps, and propose a way to propagate the predictive uncertainty over y to
the transformed domain (i.e. compute the variance of p(g(y)|D,x)) and decompose it into the
“intrinsic” and “parameter” components. Specifically, by using the law of total variance 9 [88],
we perform the following decomposition:

Vp(y|x,D)[g(y)] = ∆p(g(y)) + ∆i(g(y)) (13)

where the respective component terms are defined as:

∆p(g(y)) =∆ Ep(θ|D)
[
Vp(g(y)|θ,x,D)[g(y)]− Vp(g(y)|θ,x,D)[g(y)|θ]

]
(14)

= Vp(θ|D)[Ep(g(y)|θ,x,D)[g(y)|θ]]︸ ︷︷ ︸
propagated parameter uncertainty

(15)

∆i(g(y)) =∆ Ep(θ|D)[Vp(g(y)|θ,x,D)[g(y)|θ]]︸ ︷︷ ︸
propagated intrinsic uncertainty

(16)

8We assume here that the transform g is a measurable function with well-defined expectation and variance.
9The total law of variance (also known as Eve’s Law) states that if random variables if A and B are random

variables on the same probability space, and the mean and the variance of A and B are well-defined, then
V[A] = V[E[A|B]] + E[V[A|B]].
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We refer to the components ∆p(g(y)) and ∆i(g(y)) as “propagated” parameter and intrinsic
uncertainty. Intuitively, the first term quantifies the difference in variance between the cases
where we have variable parameters and fixed parameters. In other words, this quantifies how
much predictive uncertainty on the derived quantity arises, on average, from the variability in
parameters. The second term on the other hand quantifies the average variance of the model
prediction when the parameters are fixed, which signifies the model-independent uncertainty
due to data i.e. intrinsic uncertainty. Assuming that the considered neural network is iden-
tifiable10 and sufficiently complex to capture the underlying data generating process, as the
amount of training data increases, the posterior p(θ|D) tends to a Dirac delta function and
thus the first term diminishes to zero while the second term remains. A similar variance de-
composition technique was employed in [89] to understand how the variation in cell signals of
interest (e.g. gene expression) in a bio-chemical network is caused by the fluctuations of other
environmental variables (e.g. transcription rate and biological noise). In our case, we employ
the variance decomposition technique to separate the effects of network parameters from the
intrinsic uncertainty in the prediction of g(y).

We first consider a special case where the transform g is an identity map i.e. g(y) =
y. Since the likelihood is modelled by a Gaussian distribution with heteroscedastic noise i.e.
p(y|θ1, θ2,x,D) = N (y;µ(x; θ1),Σ(x; θ2)), we see that the parameter and intrinsic uncertainty
are given by

∆p(y) = Vp(θ1|D)[µθ1(x)], ∆i(y) = Ep(θ2|D)[Σθ2(x)] (17)

which can be approximated by the components of the MC variance estimator in eq. (12) :

∆̂p(y) =
1

T

T∑
t=1

µ(x; θt1)µ(x; θt1)
T − µ̂y|xµ̂

T
y|x (18)

∆̂i(y) =
1

T

T∑
t=1

Σ(x; θt2) (19)

where {(θt1, θt2)}Tt=1 are drawn from the approximate posterior qφ(θ1, θ2).
More generally, when the transform g is complicated, MC sampling provides an alterna-

tive implementation. Given samples of model parameters {θt}Tt=1 ∼ q(θ|D) and {gtj}Jj=1 ∼
p(g(y)|θt,x,D) for t = 1, ..., T , we estimate both the progapated parameter and intrinsic un-
certainty by simply using sample mean and sample variance:

∆̂p(g(y)) =∆
1

T

∑
t

(µ̂t)2 −
( 1

(J − 1)T

∑
j,t

(gtj)
)2

(20)

∆̂i(g(y)) =∆
1

(J − 1)T

∑
j,t

(gtj)
2 − 1

T

∑
t

(µ̂t)2 (21)

µ̂t =
1

J

∑
j

gtj. (22)

These estimators are, although unbiased, higher in variance than the case where g is the identity
(eq. (18) and eq. (19)), due to two sources of sampling, thus requiring more samples for reliable
estimation of respective uncertainty components.

10We note that a neural network is, in general, not identifiable i.e. there exist more than a single set of
parameters that capture the same target distribution p(g(y)|x). In such cases, the posterior distribution p(θ|D)
does not collapse to a single Dirac Delta function with infinite amount of observations—it rather converges
to a mixture of all sets of network parameters Θ such that p(g(y)|θ∗,x) = p(g(y)|x)∀θ∗ ∈ Θ. However, the
expectation Ep(g(y)|θ,x,D)[g(y)|θ] is the same for all θ ∈ Θ and thus the propagated parameter uncertainty
∆p(g(y)) converges to zero.
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4 Experiments and Results
In this section, we evaluate the proposed uncertainty modelling techniques for super-resolution
of diffusion MR images. First, we quantitatively study the effects of modelling uncertainty
on the super-resolution performance by comparing our probabilistic CNN models against the
relevant baselines in two different types of diffusion signal representations. Secondly, we evaluate
the value of predictive uncertainty as a realiability metric of output images on multiple datasets
of both healthy subjects and those with unseen pathological structures such as brain tumour
(Glioma) and multiple sclerosis (MS).

4.1 Datasets

We make use of the following four diffusion MRI datasets to evaluate different benefits of the
proposed technique:

• Human Connectome Project dataset: we use the diffusion MRI data from the
WU-Minn HCP (release Q3) [90] as the source of the training datasets. The dataset
enjoys very high image resolution, signal levels and coverage of the measurement space,
enabled by the combination of custom imaging, reconstruction innovations and a lengthy
acquisition protocol (circa 59 min) [42]. Each subject’s data set contains 288 diffusion
weighted images (DWIs) of voxel size 1.253 mm3 of which 18 have nominal b = 0 and
the three high-angular-resolution-diffusion-imaging (HARDI) shells of 90 directions have
nominal b-values of 1000, 2000, and 3000 smm−2 (see [42] for the full acquisition details).
The data are preprocessed by correcting distortions including susceptibility-induced, eddy
currents and motion as outlined in [91].

• Lifespan dataset: this dataset (available online at http://lifespan.humanconnectome.
org contains 26 subjects of much wider age range (8− 75 years) than the main HCP co-
horts (22− 36 years), and is acquired with a shortened version of the main HCP protocol
(circa 36 min) with lower resolution (1.5 mm isotropic voxels) and only two HARDI
shells, with b = 1000 and 2500 smm−2. Due to the differences in sequence timing and
voxel resolution, Lifespan dataset has a different signal-to-noise ratio from HCP dataset.
However, we also note that the protocol still leverages the special features of the HCP
scanners, providing images of substantially better quality than standard sequences. In
this work, we focus the elderly subjects (45-75 years old) and utilise this out-of-training-
distribution dataset to assess the robustness of our techniques to domain shifts. It is well
known and widely accepted that there are significant differences in numerous diffusion
metrices between young adults and elderly subjects. Most notably, the DTI fractional
anisotropy (FA) is significantly lower and the DTI mean diffusivity (MD) is significantly
higher in elderly subjects compared to young adults. We refer the interested readers to
References [92–94] for more details.

• Prisma dataset: two healthy male adults (29 and 33 years old respectively) were scanned
twice at different image resolutions using the clinical 3T Siemens Prisma scanner in FM-
RIB, Oxford. Both datasets contain diffusion MRI data with 21 b = 0 images and three
90-direction HARDI shells, b-values of 1000, 2000, and 3000 smm−2, each for two reso-
lutions, 2.50 mm and 1.35 mm isotropic voxels (see [40] for full acquisition details). In
addition, each of these datasets also includes a standard 3D T1-weighted MPRAGE (1
mm isotropic resolution). The Prisma scanner is less powerful than the bespoke HCP
scanner and cannot achieve sufficient signal at 1.25 mm resolution, but the 1.35 mm data
provides a pseudo ground-truth for IQT resolution enhancement of the 2.5 mm data.

14

http://lifespan.humanconnectome.org
http://lifespan.humanconnectome.org


• Pathology dataset: we use two separate datasets which consist of images of brain
tumour (Glioma) [95] and multiple sclerosis (MS) patients, respectively. The data of each
wubject with glioma contains DWIs with b = 700 s/mm2 while the measurement of each
MS patient is of b = 1200 s/mm2. Both datasets have isotropic voxel size 23 mm3, which
is closer to the image resolution of commonplace clinical scanners. We use these datasets
to assess the behaviour of predictive uncertainty on images with pathological features
that are not represented in the training data set.

In all the experiments, super-resolution is performed on diffusion parameter maps derived
from the DWIs in the above datasets. In particular, we consider two diffusion MRI models,
namely the diffusion tensor (DT) model [96] and Mean Apparent Propagator (MAP) MRI [97],
where the former is the simplest and most standard diffusion parameter map, and the latter is
a high-order generalisation of the former with the capacity to characterise signals from more
complex tissue structures (e.g. fibre crossing regions), a requirement for successful tractography
applications. We compute both of these diffusion parameter maps using the implementation
from [40], which is available at https://github.com/ucl-mig/iqt.

We fit the DT model to the combination of b = 0 images and b = 1000 s/mm2 HARDI shell
for the HCP and Lifespan datasets, and b = 700 s/mm2 shell for the brain tumour dataset.
In all cases, weighted linear least squares are employed for the fitting, taking into account the
spatially varying b-values and gradient directions in the HCP dataset. On the other hand,
in the case of MAP-MRI, 22 coefficients of basis functions up to order 4 are estimated via
(unweighted) least squares to all three shells of the HCP, Lifespan and Prisma datasets. As
noted in [40], the choice of scale parameters (see [97]) µx = µy = µz = 1.2×10−3 mm empirically
minimises the fitting error in the HCP dataset, and is used for all datasets.

Training datasets in all experiments are constructed by artificially downsampling very high-
resolution images in the HCP dataset. In particular, we employ the following downsampling
procedure: (i) the raw DWIs of selected subjects are blurred by applying the mean filter of
size r × r × r independently over channels with r denoting the upsampling rate; (ii) the DT
or MAP parameters are computed for every voxel; (iii) the spatial resolution of the resultant
parameter maps are reduced by taking every r pixels. A coupled library of low-resolution
and high-resolution patches is then constructed by associating each patch in the downsampled
DTI/MAP-MRI with the corresponding patch in the ground truth DTI or MAP-MRI. In this
case, we ensure the low-resolution patch to be centrally and entirely contained within the
corresponding high-resolution patch (as illustrated by the yellow and orange squares in Fig. 3).
We then randomly select a pre-set number of patches from each subject in the training pool to
create a training dataset as detailed in Table 1. In addition to the 8 subjects used in the prior
work [33, 38, 39], we randomly select additional 8 subjects from the HCP cohort and include
them in the training subject pool. Patches are standardized channel-wise by subtracting the
mean of foreground pixel intensities of the corresponding subject and dividing by its standard
deviation. Moreover, since MAP-MRI datasets contain outliers due to model fitting, in large
enough quantity to influence the training of the baseline 3D-ESPCN model, we remove them by
clipping the voxel intensity values of the respective 22 channels separately at 0.1% and 99.9%
percentiles computed over all the foreground voxels in the whole training dataset.

4.2 Network Architectures and Training

For the training of all CNN models, we minimised the associated loss function using Adam [98]
for 200 epochs with initial learning rate of 10−3 and β = [0.9, 0.999], with minibatches of size
12. We hold out 50% of training patch pairs as a validation set. The best performing model
was selected based on the mean-squared-error (MSE) on the validation set.
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Data Size of input x Size of output y No. pairs (x,y) per subject No. subjects
DTIs 11× 11× 11× 6 14× 14× 14× 6 8000 16
MAP-MRIs 21× 21× 21× 22 14× 14× 14× 22 4000 16

Table 1: Details of training data for two diffusion MR signal representations, DTIs and MAP-MRIs.
The first two columns from the right denote the size of the input x and output patches y of dimension
[width, height, depth, channels] while the third and the fourth columns show the number of patch pairs
(x,y) extracted from each subject, and the total number of training subjects used, respectively.

For the super-resolution of DTIs, as in [73], we use a minimal architecture for the baseline
3D-ESPCN, consisting of three 3D convolutional layers with filters (33, 50) → (13, 100) →
(33, 6r3) where r is upsampling rate and 6 is the number of channels in DTIs. As illustrated in
Fig. 3, the dimensions of convolution filters are chosen, so each 53 · 6 low-resolution receptive
field patch maps to a r3 · 6 high-resolution patch, which mirrors competing random forest based
methods [38, 39] for a fair comparison. On the other hand, for MAP-MRI, which is a more
complex image modality with 21 channels, we employ a deeper model with 6 convolution layers
(53, 256) → (33, 256) → (33, 128) → (33, 128) → (33, 64) → (33, 21r3) prior to the shuffling
operation, which expands the receptive field on each r3 · 21 high-resolution patch to 153 · 21
input low-resolution patch. Every convolution layer is followed by a ReLU non-linearity except
the last one in the architecture, and batch-normalization [99] is additionally employed for
MAP-MRI super-resolution between convolution layer and ReLU non-linearity.

The mean and variance networks in the heteroscedastic noise model introduced in Sec. 3.3
are implemented as two separate baseline 3D-ESPCNs of the architectures, specified above for
DTIs and MAP-MRIs. Positivity of the variance is enforced by passing the output through a
softplus function f(x) = ln(1 + ex) as in [55].

For variational dropout, we considered two flavours: Var.(I) optimises per-weight dropout
rates, and Var.(II) optimises per-filter dropout rates. More formally, the “drop-out rate" αij
in the approximate posterior qφ(θij) = N (θij; ηij, αijη

2
ij) is different for every element in each

convolution kernel in the former while the latter has common αij shared across each kernel.
In preliminary analysis, we found that the number of samples per data point for estimating
reconstruction term (eq. 7) can be set to S = 1 so long as the batch size is sensibly large
(M = 12).

We also note the default training with binary and Gaussian dropout also employs S = 1 [81]
along with other MC variational inference methods for neural networks such as [37, 87, 100].
Variational dropout is applied to both the baseline and heteroscedastic models without changing
the architectures. For both binary and Gaussian dropout modes, we incorporate the dropout
operations of fixed rate p in every convolution layer of the baseline 3D-ESPCN architecture.

All models are trained on simulated datasets generated from 16 HCP subjects as detailed in
Sec. 4.1. We also retrained the random forest models employed in [39,40] on equivalent datasets.
It takes under 60/360 mins to train a single network on DTI/MAP-MRI data on a single TITAN
X GPU. All models are implemented in the TensorFlow framework [101] and the codes will be
released at https://github.com/rtanno21609/UncertaintyNeuroimageEnhancement.

4.3 Benefits on Super-resolution Performance

We evaluate the effects of modelling different components of uncertainty on the prediction
performance of our models for super-resolution of DTI and MAP-MRI on two datasets—HCP
and Lifespan as detailed in Sec. 4.1. The first dataset contains 16 unseen subjects from the
same HCP cohort used for training, while the second one consists of 10 subjects from the HCP
Lifespan dataset. The latter tests generalisability, as they are acquired with a different protocol
at lower resolution (1.5 mm isotropic), and contain subjects of a different age range (45-75 years)
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Figure 6: Visualisation of “interior” (yellow) and “exterior” regions (red). The interior region consists
of a set of patches contained entirely within the brain while the exterior region consists of partial
patches that contain mixtures of brain and background voxels

to the original HCP data (22-36 years). We perform ×2 upsampling in all spatial directions.
The reconstruction quality is measured with root-mean-squared-error (RMSE), peak-signal-to-
noise-ratio (PSNR) and mean-structural-similarity (MSSIM) [102] on two separate regions: i)
“interior”; the set of pixels whose the 53 cubic neighbourhood is entirely contrained within the
brain mask; (ii) “exterior”; the remaining set of pixels in the brain mask, as shown in Fig. 6.
This is because the current state-of-the-art methods based on random forests (RFs) such IQT-
RF [40] and BIQT-RF [39] are only trained on patches from the interior region and requires a
separate procedure on the brain boundary. In addition, the estimation problem is quite different
in boundary regions, but remains valuable particularly for applications such as tractography
where seed or target regions are often in the cortical surface of the brain. We only present the
RMSE results, but the derived conclusions remain the same for the other two metrics (see Sec. C
in the supplementary materials). Aside from the interpolation techniques, for each method an
ensemble of 10 models are trained on different trainings set (generated by randomly extracting
patch pairs from the common 16 HCP training subjects) and for each model, the average error
metric over the test subjects are first calculated. The mean and standard deviations of such
average errors are computed across the model ensemble and reported in Table 2 and Table 3.

Table 2 shows that our baseline achieves 8.5%/39.8% reduction in RMSE for the super-
resolution of DTIs on the HCP dataset on the interior/exterior regions with respect to the best
published method, BIQT-RF [39]. While the standard deviations are higher, the improvements
are more pronounced in MAP-MRI super-resolution, reducing the average RMSEs by 49.6%
and 63.5% on the interior and exterior regions. We note that that IQT-RF and BIQT-RF are
only trained on interior patches, and super-resolution on boundary patches requires a separate
ad hoc procedure. Despite including exterior patches in training our model, which complicates
the learning task, the baseline CNN out-performs the RF methods on both regions. We see
similar improvements in the out-of-distribution Lifespan dataset.

Reconstruction is faster than the RF baselines; the 3D-ESPCN is capable of estimating
the whole high-resolution DTI/MAP-MRI under 10/60 seconds on a CPU and 1/10 second(s)
on a GPU. On the other hand, BIQT-RF takes ∼ 10 mins with 8 trees on both DTIs and
MAP-MRIs. The fully convolutional architecture of the model enables to process input patches
of different size from that of training inputs, and we achieve faster reconstruction by using
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larger input patches of dimension 253 · c where c is the number of channels. We also note
that the reconstruction time of the variational dropout based models increases by a factor of
the number of MC samples used at test time, although it is possible, with more memory, to
leverage GPU parallelisation by making multiple copies of each input patch and treating them
as a mini-batch. On the other hand, the heteroscedastic CNN enjoys the same inference speed
of the baseline since only the mean network is used for reconstruction (the covariance network
is only employed to quantify the estimated intrinsic uncertainty).

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
CSpline-interpolation 10.069± n/a 31.738± n/a 32.483± n/a 49.066± n/a
β-Spline interpolation 9.578± n/a 98.169± n/a 33.429± n/a 186.049± n/a
IQT-RF 6.974± 0.024 23.139± 0.351 10.038± 0.019 25.166± 0.328
BIQT-RF 6.972± 0.069 23.110± 0.362 9.926± 0.055 25.208± 0.290
3D-ESPCN(baseline) 6.212± 0.017 13.609± 0.084 8.902± 0.020 16.389± 0.114
+ Binary Dropout (p = 0.1) 6.319± 0.015 13.738± 0.048 9.093± 0.024 16.489± 0.099
+ Gaussian Dropout (p = 0.05) 6.463± 0.034 14.168± 0.051 9.184± 0.048 16.653± 0.092
+ Variational Dropout (I) 6.194± 0.013 13.412± 0.041 8.874± 0.027 16.147± 0.051
+ Variational Dropout (II) 6.201± 0.015 13.479± 0.047 8.878± 0.031 16.230± 0.075
+ Hetero. 6.135± 0.029 15.469± 0.231 8.885± 0.041 17.208± 0.211
+ Hetero. + Variational Dropout (I) 6.121± 0.015 13.591± 0.051 8.837± 0.043 16.261± 0.053
+ Hetero. + Variational Dropout (II) 6.116± 0.013 13.622± 0.099 8.861± 0.031 16.387± 0.098

Table 2: Super-resolution results on diffusion tensor images (DTIs) of HCP and Lifespan datasets
for different upsampling methods. For each method, an ensemble of 10 models are trained on different
training sets generated by randomly extracting a set of patch pairs from the common 16 HCP subjects.
For each model, the average RMSE (×10−4mm2/s) over subjects in respective datasets is first computed
and the mean/std of such average RMSE over the ensemble are then reported. Best results in bold
red, and the second best in blue.

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
CSpline interpolation 5.234± n/a 30.362± n/a 7.135± n/a 29.232± n/a
β-Spline interpolation 4.852± n/a 63.446± n/a 6.523± n/a 56.937± n/a
IQT-RF [40] 4.538± 0.113 25.541± 0.131 5.882± 0.121 26.137± 0.279
BIQT-RF [39] 4.838± 0.129 25.523± 0.175 5.949± 0.131 27.509± 0.233
3D-ESPCN(baseline) 2.285± 0.126 9.316± 0.127 4.195± 0.163 11.922± 0.192
+ Binary Dropout (p = 0.1) 2.283± 0.154 9.272± 0.132 4.120± 0.178 11.652± 0.204
+ Gaussian Dropout (p = 0.1) 2.370± 0.155 9.335± 0.144 4.327± 0.157 11.907± 0.211
+ Variational Dropout (I) 2.155± 0.122 9.205± 0.193 3.997± 0.153 11.547± 0.177
+ Variational Dropout (II) 2.172± 0.128 9.112± 0.173 3.972± 0.132 11.511± 0.172
+ Hetero. 1.998± 0.132 11.294± 0.216 3.872± 0.140 12.084± 0.129
+ Hetero + Variational Dropout (I) 1.951± 0.122 9.102± 0.181 3.572± 0.171 11.037± 0.192
+ Hetero + Variational Dropout (II) 1.969± 0.119 9.052± 0.162 3.606± 0.141 11.311± 0.195
3D-ESPCN(without outlier removal) 3.425± 0.163 13.284± 0.239 6.032± 0.229 15.513± 0.273
+ Hetero. 2.264± 0.153 11.306± 0.172 3.919± 0.140 12.821± 0.150
+ Hetero + Variational Dropout (I) 2.138± 0.159 10.022± 0.187 3.681± 0.193 12.133± 0.205
+ Hetero + Variational Dropout (II) 2.133± 0.188 9.988± 0.209 3.690± 0.184 12.052± 0.212

Table 3: Super-resolution results on MAP-MRIs of HCP and Lifespan datasets for different up-
sampling methods. For each method, an ensemble of 5 models are trained on different training sets
generated by randomly extracting a set of patch pairs from the common 16 HCP subjects. For each
model, the average RMSE over subjects in respective datasets is first computed and the mean/std of
such average RMSEs (×10−2) over the ensemble are then reported. Best results in bold red, and the
second best in blue. In addition, the performance of 3D-ESPCN and its probabilistic variants trained
on data without outlier removal are also included.

Table 2 shows that, on both HCP and Lifespan data, modelling both intrinsic and param-
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eter uncertainty (i.e. Hetero. + Variational Dropout (I), (II)) achieves the best reconstruction
accuracy in DTI super-resolution. We observe that modelling intrinsic uncertainty with the het-
eroscedastic network on its own further reduces the average RMSE of the baseline 3D-ESPCN
on the interior region with high statistical significance (p < 10−3). However, poorer perfor-
mance is observed on the exterior than the baseline. On the other hand, using 200 MC weight
samples 11, we see modelling parameter uncertainty with variational dropout (see Variational
Dropout.(I)-CNN) performs best on both datasets on the exterior region. Combination of het-
eroscedastic model and variational dropout (i.e. Hetero. + Variational Dropout (I) or (II))
leads to the top 2 performance on both datasets on the interior region and reduces errors on
the exterior to the level comparable or better than the baseline.

Similarly, Table 3 shows that the best performance in MAP-MRI super-resolution comes
from the combined models (i.e. Hetero.+Variational Dropout.(I) and (II)). We observe that
as with the DTI case, modelling intrinsic uncertainty through the heteroscedastic network
improves the reconstruction accuracy on the interior region, whilst the errors on the exterior are
increased with respect to the baseline 3D-ESPCN. Moreover, the improvement is pronounced
when the outliers due to model fitting errors are not removed in the training data. In this
case, we see that the reconstruction accuracy of 3D-ESPCN dramatrically decreases, whilst
in contrast it is only marginally compromised when equipped with the heteroscedastic noise
model, displaying robustness to outliers. Lastly, we note that the top-2 accuracy are consistently
achieved by the joint modelling of intrinsic and parameter uncertainty (i.e. Hetero.+Variational
Dropout.(I) and (II)) on both the interior and exterior regions on both HCP and Lifespan
datasets.

The performance difference of heteroscedastic network between the interior and the exterior
region roots from the loss function. The Mahalanobis termMθ(D) in eq.(5) imposes a larger
penalty on the regions with smaller intrinsic uncertainty. The network therefore allocates less
of its resources towards the regions with higher uncertainty (e.g. boundary regions) where
the statistical mapping from the low-resolution to high-resolution space is more ambiguous,
and biases the model to fit the regions with lower uncertainty. However, we note that the
performance of the heteroscedastic network is still considerably better than the standard in-
terpolation and RF-based methods. By augmenting the model with variational dropout, the
exterior error of the heteroscedastic model is dramatically reduced, indicating the “smoothing”
regularisation effect of dropout against overfitting to low-uncertainty areas (i.e., regions with
high data frequency). We also observe concomitant performance improvement on the interior
regions on both datasets, which additionally shows the benefits of such regularisation even in
low-uncertainty areas.

Both Table 2 and Table 3 show that the use of variational dropout attains lower errors
than the models with fixed dropout probabilities p, namely, Binary and Gaussian dropout [81].
Different instances of both dropout models are trained for a range of p by linearly increasing
on the interval [0.05, 0.3] with increment 0.05, and the test errors for the configurations with
smallest RMSE on the validation set are reported in Table 2 and Table 3. As with variational
dropout models, 200 MC samples are used for inference. In all cases, two variants of variational
dropout (I) and (II) outperform the networks with the best binary or Gaussian dropout models,
showing the benefits of learning dropout probabilities p rather than fixing them in advance. We
should also note that the dropout operation is commonly turned off during test time. Such point
estimate approach based on mean approximation marginally reduces the average reconstruction
accuracy, as shown in a wide range of applications in [61], and does not give an estimate of the
predictive variance.

Lastly, to test the real world utility of the observed improvement in reconstruction per-
11We observed that drawing more than 200 MC samples at inference time was sufficient for the average RMSE

and its standard deviation to converge.
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formance, we further assessed the benefits of super-resolution with a tractography experiment
on the Prisma dataset, which contains two DWIs of the same subject at two different image
resolutions—1.35 mm and 2.5 mm isotropic voxels, as detailed in Sec. 4.1. Fig. 13 in the sup-
plementary materials shows that IQT via our best performing CNN (3D-ESPCN + Hetero. +
Variational Dropout (I)) makes a tangible difference in downstream tractography. For more
details, we refer the readers to Sec. E in the supplementary material.

4.4 Reliability Assessment of Model Predictions

In this section, we investigate the utility of uncertainty modelling in quantifying and under-
standing the reliability of model predictions. Firstly, in Sec. 4.4.1, we investigate the utility
of the derived predictive uncertainty map as a proxy measure of reconstruction accuracy on
healthy test subjects from both HCP and Lifespan datasets. Secondly, in Sec. 4.4.2, we study
the behaviours of uncertainty maps in the presence of abnormal features that are not present
in the training data.

4.4.1 Healthy Test Subjects

We employ the most performant CNN model (3D-ESPCN + Hetero. + Variational Dropout(I))
to generate the high-resolution predictions of mean diffusivity (MD) and fractional anisotropy
(FA), and their associated predictive uncertainty maps. Here we draw 200 samples of high-
resolution DTI predictions for each subject from the predictive distribution q∗φ(y|x), and then
the FA and MD maps of each prediction are computed. The sample mean and standard devi-
ation are then calculated from these samples to generate the final estimates of high-resolution
MD/FA maps and their corresponding predictive uncertainty.

Fig. 7 displays high correspondence between the error (RMSE) maps and the predictive
uncertainty on both FA and MD of a HCP test subject. This demonstrates the potential
utility of uncertainty map as a surrogate measure of prediction accuracy. In particular, the MD
uncertainty map captures subtle variations within the white matter and the cerebrospinal fluid
(CSF) at the centre. Also, in accordance with the low reconstruction accuracy, high predictive
uncertainty is observed in the CSF in MD. This is expected since the CSF is essentially free
water with low signal-to-noise-ratio (SNR) and is also affected by biological noise such as cardiac
pulsations. The reconstruction errors are high in FA prediction on the bottom-right quarter of
the brain boundary, close to the skull, which is also reflected in the uncertainty map.

Fig. 7 also shows strong correlation between the intensity value of the prediction and the
predictive uncertainty. This is expected since the error map itself correlates strongly with the
intensity values. However, we note this is not always the case and we would like to point to
some example cases. For instance, we observe in the top row of Fig. 7 that uncertainty is lower
in a region of grey matter with higher MD intensity, and also captures the subtle variations
in accuracy within the central CSF, which has approximately uniform intensity. Similarly, the
FA map in the bottom row shows that the uncertainty on the bottom right brain boundary is
particularly high in accordance with high RMSE, while the FA values there are very low. We
also observe similar behaviours even in the presence of abnormalities (as described in greater
detail in the subsequent section): Fig. 11 (b) shows that the propagated parameter uncertainty
assigns higher or comparable degree of uncertainty to the MS lesions than the central CSF
which has significantly higher MD values.

Fig. 8 tests the utility of predictive uncertainty map in discriminating potential predictive
failures in the predicted high-resolution MD map. We define ground truth “safe” voxels as the
ones with reconstruction error (RMSE) smaller than a fixed value, and the task is to separate
them from the remaining ground-truth “risky” voxels by thresholding on their predictive uncer-
tainty values. The threshold for defining safe voxels is set to 1.5× 10−4 s/mm2, such that the
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Figure 7: Comparison between voxel-wise RMSE and predictive uncertainty maps for FA and MD
computed on a HCP test subject (min-max normalised for MD and FA separately). Low-res input,
ground truth and the mean of high-resolution predictions are also shown.

risky voxels mostly concentrate on the outer-boundary and the CSF regions (which account
for 17.5% of all voxels under consideration). Here the positive class is defined as “safe” while
the negative class is defined as “risky”. Fig. 8 (a) shows the corresponding receiver operating
characteristic (ROC) curve of such binary classification task, which plots the true-positive-rate
(TPR) against the false-positive-rate (FSR) computed based on all the voxels in the 16 HCP
training subjects. In this case, TPR decribes the percentage of correctly detected safe voxels
out of all the safe ones, while FPR is defined as the percentage of risky voxels that are wrongly
classified as safe out of all the risky voxels. We then select the best threshold by maximising
the F1 score, and use this to classify the voxels in each predicted high-resolution MD into
“safe” and “risky” ones for all subjects in the test HCP dataset and the Lifespan dataset. Fig.8
(b) shows the inter-subject average of the TPR and FPR on both datasets. While on aver-
age TPR slightly worsens compared to the results on the training subjects, FPR improves in
both cases—notably, this uncertainty-based classification is able to correctly identify 96% of
risky predictions on unseen subjects from out-of-training-distribution dataset, namely Lifespan,
which differs in demographics and underlying acquisition. Fig.8 (c) visualises the classification
results to the pre-defined “ground truth" on one of the Lifespan subjects, which illustrates that
the generated “warning” aggressively flags potentially risky voxels at the cost of thresholding
out the safe ones.

Lastly, we have also performed the same quantitative analysis on the FA map (see Fig. 12
in Section B in the supplementary material). We observe similar results with the optimal
threshold on predictive uncertainty, achieving the average detection rate of 10% on both “within-
distribution” HCP test set and 8% on the “out-of-distribution” Lifespan data set. The slight
increase in the TRP can be ascribed to the more noisy distribution of the high error voxels.
In this case, a large proportion of “risky” voxels concentrate on the brain parenchyma and
structural boundary, which can also be detected with reasonable accuracy.
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Figure 8: Discrimination of “safe” voxels in the predicted high-resolution MD map by thresholding
on predictive uncertainty. Here a single 3D-ESPCN + Hetro. + Variational Dropout (I) model is
used to quantify the predictive uncertainty over each image volume. (a) the ROC curve plots the
true positive rate (TPR) against false positive rate (FPR) computed for a range of threshold values
on the foreground voxels in the training subjects. Best threshold (black dot) was selected such that
F1 score is maximised and is employed to separate “safe” voxels from “risky” ones; (b) the average
TPR and FPR over the 16 test HCP subjects and the 16 Lifespan subjects are shown; (c) an example
visualisation of the “ground truth” safe (black) and risky (red) voxels on a Lifespan subject along with
the corresponding classification results denoted as “warning”.

4.4.2 Unseen Abnormalities and Uncertainty Decomposition

We separately visualise the propagated intrinsic and parameter uncertainty over the predicted
high-resolution MD map on images of subjects with a variety of different unseen abnormal
structures, such as benign cysts, tumours (Glioma) and focal lesions caused by multiple sclero-
sis (MS). We emphasise here that all these images have been acquired with different protocols.
Specifically, benign cysts in the HCP datasets represent abnormalities in images acquired with
the same protocol as the training data, while tumours and MS lesions are examples of patholo-
gies present in out-of-distribution imaging protocols. In all cases, we use the SR network,
Hetero.+Variational Dropout (I), trained on healthy subjects from HCP dataset. For each of
200 different sets of parameters {θt}200t=1 sampled from the posterior distribution q(θ|D), we draw
10 samples of high-resolution DTIs from the likelihood, {ytj}10j=1 ∼ p(y|θt,x,D), compute the
corresponding MD, and approximate the two constituents of predictive uncertainty with the
MC estimators given in eq.(20) and (21).

Fig. 9 shows the reconstruction accuracy along with the components of predictive uncer-
tainty over the high-resolution MD map of a HCP test subject, which contains a benign abnor-
mality (a small posterior midline arachnoid cyst). The error (RMSE) and propagated intrinsic
uncertainty are plotted on the same scale whereas the propagated model uncertainty is plotted
on 1/5 of the scale for clear visualisation. In this case, the predictive uncertainty is dominated
by the intrinsic component. In particular, low propagated intrinsic uncertainty is observed in
the interior of the cyst relative to its boundary in accordance with the high accuracy in the
region. This is expected as the interior structure of a cyst is highly homogeneous with low vari-
ance in signals and the super-resolution task should therefore be relatively straightforward. On
the other hand, the component of parameter uncertainty is high on the interior structure which
also makes sense as such homogeneous features are underrepresented in the training data of
healthy subjects. This example illustrates how decoupling the effects of intrinsic and parameter
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uncertainty potentially allows one to make sense of the predictive performance.
Fig.10 visualises the uncertainty components generated by the same CNN model trained on

datasets of varying size. We see that the propagated parameter uncertainty diminishes as the
training set size increases, while the propagated intrinsic uncertainty stays more or less constant.
This result is indeed what is expected as described in Fig. 1; the specification of network weights
becomes more confident i.e. the variance of the posterior distribution decreases as the amount
of training data increases, while the effect of intrinsic uncertainty is only determined by the
underlying problem and is irreducible with the amount of data. On the other hand, when the
standard binary or Gaussian dropout was employed instead of variational dropout, we observed
that the effect of parameter uncertainty stayed more or less constant with the size of training
data. This may be a consequence of the posterior variance largely determined by the prespecified
drop-out rates, which in turn results in more static variance of predictive distribution.

(a) HCP subject with a benign cyst

(b) Errors vs. uncertainty components

Figure 9: Visualisation of (a) MD, FA and colour FA maps computed from the DTI of a HCP subject
with a small posterior midline arachnoid cyst in the central part of the brain. (b) the corresponding
reconstruction accuracy (RMSE) in MD and the corresponding components of predicted uncertainty.

We further validate our method on clinical images with previously unseen pathologies. We
note that the pathology data contain images acquired with standard clinical protocols with voxel
size slightly smaller than that of the training low-resolution images and lower signal-to-noise
ratio.

Fig. 11 shows that pathological areas not represented in the training set are flagged as
highly uncertain. Although the ground truth is not available in this case, the uncertainty
can be quantified instead to flag potential low accuracy areas. Fig. 11 (a) shows that the
propagated parameter uncertainty highlights the tumour core, and speckly artefacts in the
input image, which are not represented in the training data. On the other hand, the intrinsic
uncertainty component is high on the whole region of pathology covering both the tumour core
and its surrounding edema. Fig. 11 (b) shows that high parameter uncertainty is assigned to a
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(a) (b)

Figure 10: Training set size vs propagated intrinsic/parameter uncertainty. (a) shows the quantitative
results on the whole HCP test population. For a fixed training data size, an ensemble of 10 each 3D-
ESPCN + Hetro. + Variational Dropout (I) models are trained on different training sets generated
by randomly extracting a set of patch pairs from the common 16 HCP training subjects. The average
uncertainty components from each model are first computed over the HCP test subjects, and the
mean/std of such average uncertainty values over the model ensemble are then reported. (b) visualises
the respective uncertainty components from a single model on the MD map of an unseen HCP subject
with a benign cyst. The uncertainty maps are normalised across all the figures in each row.

large part of focal lesions in MS, while the intrinsic uncertainty is mostly prevalent around the
boundaries between anatomical structures and CSF. We also observe that the super-resolution
sharpens the original image without introducing noticeable artifacts; in particular, for the brain
tumour image, some of the partial volume effects are cleared.

5 Discussion and Conclusion
We introduce a probabilistic deep learning (DL) framework for quantifying three types of un-
certainties that arise in data-enhancement applications, and demonstrate its potential benefits
in improving the safety of such systems towards practical deployment. The framework models
intrinsic uncertainty through heteroscedastic noise model and parameter uncertainty through
approximate Bayesian inference in the form of variational dropout, and finally integrates the
two to quantify predictive uncertainty over the system output. Experiments focus on the
super-resolution application of image quality transfer (IQT) [40] and study several desirable
properties of such framework, which lack in the existing body of data enhancement methods
based on deterministic DL models.

Firstly, results on a range of applications and datasets show that modelling uncertainty
improves overall prediction performance. Table 2 and 3 show that modelling the combination
of both intrinsic and parameter uncertainty achieves the state-of-the-art accuracy on super-
resolution of DTIs and MAP-MRI coefficients in both of the HCP test dataset and the Lifespan
dataset, improving on the present best methods based on random-forests (RF-IQT [40] and RF-
BIQT [39]) and interpolation—the standard method to estimate sub-voxel information used in
clinical visualisation software. In particular, results on the Lifespan dataset, which differs from
the training data in age range and acquisition protocol, indicates the better generalizability of
our method. In addition, Fig. 13 shows that such combined model also benefits downstream
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(a) Brain Tumour

(b) Multiple Sclerosis

Figure 11: Visualisation of propagated uncertainty components on clinical images with pathology
that was not present in the training data. The super-resolution is performed on the clinical images
due to low-resolution, and thus the ground truths are not available in both cases. (a) shows the results
on the data of a Glioma patient, and the yellow circle indicates the region of tumour. (b) shows the
same set of results on a MS patient with labels of focal lesions obtained from a neurologist indicated in
yellow. Each row shows from left to right: (i) MD map computed from the original DTI; (ii) MD map
computed from the output of super-resolution; (iii), (iv) maps of the estimated propagated intrinsic and
parameter uncertainty; (v) “warning map” obtained from the same threshold value used in Sec. 4.4.1,
which flag large parts of the pathological features in both cases.

tractography in comparison with the previous methods, illustrating the potential utility of
the method for downstream connectivity analysis. Such improvement in the predictive perfor-
mance arises from the regularisation effects imparted by the modelling of respective uncertainty
components. Specifically, modelling intrinsic uncertainty through the heteroscedastic network
improves robustness to outliers, while modelling parameter uncertainty via variational dropout
defends against overfitting. For example, Table 3 shows that the predictive performance of the
3D-ESPCN + Hetero. model is only marginally compromised even when the outliers are not
removed from training data, while the baseline 3D-ESPCN results in much poorer performance.
This can be ascribed to the ability of the variance network Σθ2( · ) in the 3D-ESPCN + Hetero.
architecture to attenuate the effects of outliers by assigning small weights (i.e. high uncertainty)
in the weighted MSE loss function as shown in eq. (21). However, this loss attenuation mecha-
nism can also encourage the network to overfit to low-uncertainty regions, potentially focusing
less on ambiguous yet important parts of the data—we indeed observe in Table 3 that the het-
eroscedastic network performs considerably worse than the baseline 3D-ESPCN on the exterior
regions while the reverse is observed on the interior part. Such overfitting to low-uncertainty
interior regions is alleviated by modelling parameter uncertainty with variational dropout [37],
as evidenced by the dramatic error reduction in the exterior region on both HCP and Lifespan
datasets.

Secondly, experiments on the images of healthy and pathological brains have demonstrated
the utility of predictive uncertainty as a reliability metric of output images. Fig. ?? illustrates
the strong correspondence between the maps of predictive uncertainty and the reconstruction
quality (voxel-wise RMSE) in the downstream derived quantites such as FA and MD maps. In
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addition, Fig. 11 shows that such uncertainty measure also highlights pathological structures
not observed in the training data. We have also tested the utility of predictive uncertainty in
discriminating voxels with sufficiently low RMSEs in the predicted high-resolution MD maps.
As shown in Fig. 8, the optimal threshold selected on the HCP training dataset is capable of
detecting over 90% of non-reliable predictions—voxels with RMSE above a certain threshold—
not only on the unseen subjects in the same HCP cohort but also on subjects from the out-
of-sample Lifespan dataset, that are statistically disparate from the training distribution (e.g.
different age range and acquisition protocol). These results combined demonstrate the utility
of predictive uncertainty map as a means to quantify output safety, and provides a subject-
specific alternative to standard population-group reliability metrics (e.g. mean reconstruction
accuracy in a held-out cohort of subjects). Such conventional group statistics can be misleading
in practice; for instance, the information that a super-resolution algorithm is reliable 99% of
the time on a dataset of 1000 subjects may not accurately represent the performance on a new
unseen individual if the person is not well-represented in the cohort (e.g. pathology, different
scanners, etc). In contrast, predictive uncertainty provides a metric of reliability, tailored to
each individual at hand.

Thirdly, our preliminary experiments show that decomposition of the effects of intrinsic and
parameter uncertainty in the predictive uncertainty provides a layer of explanations into the
performance of the considered deep learning methods. Fig. 9 shows that the low reconstruction
error in the centre of the benign cyst can be explained by the dominant intrinsic uncertainty,
which indicates the inherent simplicity of super-resolution task in such homogeneous region,
whilst the unfamiliarity of such structure in the healthy training dataset is reflected in the high
parameter uncertainty. Assuming that the estimates of decomposed uncertainty components are
sufficiently accurate, we could act on them to further improve the overall safety of the system.
Imagine a scenario where reconstruction error is consistently high on certain image structures, if
the parameter uncertainty is high but intrinsic uncertainty is low, this indicates that collecting
more training data would be beneficial. On the other hand, if the parameter uncertainty is
low and intrinsic uncertainty is high, this would mean that we need to regard such errors as
inevitability, and abstain from predictions to ensure safety or account for them appropriately
in subsequent analysis. We, however, note that in our experiments, the receptive field of
the employed network is relatively small. In consequence, both the intrinsic and parameter
uncertainty are estimated purely based on the statistics of local patches. Future work will
study the effects of accounting for semantic information on the quality of estimated uncertainty
components by comparing networks of varying receptive fields.

The proposed methods for estimating intrinsic and parameter uncertainty make several
simplifying assumptions in the form of likelihood model p(y|θ,x) and posterior distributions
over network parameters p(θ|D). Firstly, the likelihood model takes the form of a Gaussian
distribution with a diagonal covariance matrix. This means that the likelihood model is not able
to capture multi-modality of the predictive distribution i.e. the presence of multiple different
solutions. While the full predictive distribution (eq. (9)) is not necessarily unimodal in theory
due to the integration with the posterior distribution, we observe in practice that the drawn
samples are not very diverse. Future work should explore the benefits of employing more
complex forms of likelihood functions such as mixture models [68, 103], diversity losses [104–
106] and more powerful density estimators [68, 107–110]. Also, the diagonality of covariance
matrices means that the output pixels are assumed statistically independent given the input.
Although the predicted images display high inter-pixel consistency, modelling the correlations
between neighbouring pixels [111] may further improve the reconstruction quality. Analogous
to the likelihood function, variational dropout [37], which is used in this work, approximates
the posteriors p(θ|D) by Gaussian distributions with diagonal covariance, imposing restrictive
assumptions of unimodality and statistical independence between neural network weights. More
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recent advances in the Bayesian deep learning research [112–117] could be used to enhance the
quality of parameter uncertainty estimation by allowing the model to capture multi-modality
and statistical dependencies between parameters. We should note that both the mean and
variance MC estimators of very high dimensional posterior distribution converge with only a
few hundred samples in our case, because of this simplistic choice of the variational distributions.
However, it is likely that, in order to approximate the posterior with a more complex family of
distributions, a larger number of samples would be necessary.

The lack of “ground truths” renders the quantitative evaluation of the “accuracy” of the
derived uncertainty estimates extremely challenging. Unfortunately, the distribution of interest
p(y|x) is unknown in real-world medical imaging applications including the task of dMRI super-
resolution. However, we envision the use of image simulation would provide new means to
quantify the differences of various methods of modelling uncertainty. For the validation of
intrinsic uncertainty estimate, we plan to create a synthetic image dataset with the known
target distribution p(y|x). For example, one possibility is to pass a set of medical images
through a known stochastc transformation to define the target output images 12. This way,
the “ground truth” intrinsic noise is known and the fidelity of the intrinsic uncertainty estimate
can be quantified. It would also be interesting to study how the relative accuracy of intrinsic
uncertainty estimates from different methods measured on a variety of such synthetic datasets
translate to the measure of practical utility (e.g., detection rate of predictive failures). On the
other hand, the validation of the parameter uncertainty is more challenging since the target
distribution of interest (i.e., the posterior distribution over the parameters) is not available
even if the underlying data distribution p(y|x) is known as is the case in synthetic datasets.
However, controllable and realistic means to edit input images [118–120] (e.g., simulation of
pathological structures of different controllable parameters such as size and shape) would allow
ones to study in a systematic fashion what kinds of “out-of-distribution” structures can be
detected through the estimate of parameter uncertainty for different Bayesian NN models.

Another important future challenge is the clinical validation of predictive uncertainty as a
reliability metric of output images. To this end, we need to design a more clinically meaningful
definition of success and failure of the data enhancement algorithm at hand. Despite the
high accuracy in distinguishing between predictive failures and successes attained with our
method (Fig. 8), our definition of reconstruction quality, namely voxel-wise RMSE, does not
necessarily represent the real utility of the output image. One possible approach would be to
have clinical experts to label the potential failures in the super-resolved images, be it for a
targeted application (e.g. diagnosis of some neurological conditions) or for general usage in
clinical practice. A more economical alternative, which does not require extra label acquisition,
is to define the prediction success in downstream measurements of interest i.e. functions of
the output images g( · ), such as morphometric measurements of anatomical or pathological
structures (e.g. volumes). The propagation method (eq. (13)) introduced in Sec. 3.6 can be
utilised to quantify uncertainty components in the space of target measurement g( · ). Measuring
the correlation between such propagated uncertainty estimates and the corresponding errors
would be a useful indicator of how well the uncertainty measure reflects the accuracy of the
chosen measurement g( · ). Lastly, our initial results on the brain tumour dataset motivate
a larger-scale quantitative validation of uncertainty estimates in the presence of pathology.
Future work must examine the effect of including patients’ dataset in the training data on the
estimate of uncertainty components.

There are many ways in which uncertainty information could be utilised by radiologists
or other users of data enhancement algorithms. First, predictive uncertainty can be used to

12For example, one could use a patch-wise cubic transform with diminishing noise y = x̄3 + 1
x̄3 ε ∈ R where

x̄ denotes the sum of all elements in x and ε ∼ N (0, 1). Repeated application of this function to neighbouring
patches in the input image synthesises the target image.
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decide when to abstain from predictions in high-risk regions of images (e.g. anomalies, out-
of-distribution examples or inherently ambiguous features). For example, the original input
low-resolution image can be augmented by overlaying the high-resolution prediction only in
locations with sufficiently low uncertainty, before presenting to clinicians. As demonstrated by
Fig. 8 in the context of super-resolution, such uncertainty-based quality control of predictions is
potentially an effective means to maintain high accuracy of output images and also to safeguard
against hallucination or removal of structures [27]. Second, the uncertainty information could
be used for active learning [121] to decide which images should be labelled and included in
the training set to maximally improve the model performance. Prior work [122, 123] define
the acquisition function so as to select examples with high parameter uncertainty, and achieve
promising results in classification and segmentation tasks. In particular, these methods are able
to construct a compact and effective training dataset, and consequently improve the prediction
accuracy while reducing the training time. The same idea could be naturally extended to
data enhancement problems, that are typically formulated as multivariate regression tasks. For
example, in the case of IQT, we could simulate a library of low-resolution and high-resolution
image pairs from a large public dataset (e.g. HCP), and incrementally expand the training data
by adding more examples from such a library. We should note, however, that in many data
enhancement applications, obtaining a new “label” may require an extra acquisition possibly
with a different scanner or modality, which may be logistically challenging. Third, another
important application is transfer learning [124] where uncertainty information could be used
to leverage knowledge from different but related domains or tasks. In many data enhancement
applications, the test distribution can considerably deviate from the training distribution. For
example, the algorithm might be trained on a synthetic dataset or images acquired from a
scanner that is very different from the one used in the hospital where one plans to deploy the
model. Therefore, a mechanism to adapt performance within a specific environment (e.g., based
on the local patient population) [125], possibly in an online fashion [126, 127], is in demand.
Recent work have shown that the Bayesian formalism provides a natural framework to use
uncertainty in order to account for the difference and commonality between distributions to
guide information transfer in continual learning [128,129] or few-shot learning [130,131] settings.
Exploring the benefits of these ideas in the context of medical image enhancement remains
future work.

Another noteworthy limitation of the current super-resolution approach is the dependence
on a fixed downsampling model, which may deviate from the test environment. To some degrees,
our experiments already substantiate robustness of our approach; for example, our experiment
in Figure. 13 shows that the super-resolution algorithm can improve the quality of tractography
on a real low-quality image even in situations where the input resolution is different from that
of the training data. Moreover, we also found that the preliminary investigations into alterna-
tive downsampling strategies (e.g., replacing the block averaging with bilinear interpolation)
produce little variation in the results. However, a more thorough evaluation is needed for a
clinical adoption to establish when our super-resolution method fails, and whether such safety
boundary can be quantified through the estimated predictive uncertainty in a range of test
environments. In addition, future work will also investigate whether a more realistic emulation
of the image generation process in place of the simple downsampling (e.g., using a diffusion
MRI simulator) enhances practical applications.

The proposed framework for uncertainty quantification is formulated for multivariate regres-
sion in the general form, and thus is naturally applicable to many other image enhancement
challenges such as: rapid image acquisition techniques e.g., compressed sensing [16], MR fin-
gerprinting [132, 133] or sparse reconstruction [18, 19]; denoising [12] and dealiasing [21, 134];
image synthesis tasks e.g., estimating T2-weighted images from T1 [135–137], estimating CT
images from MRI [48,57,138], and generating a high-field scan from a low-field scan [51]; data
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harmonisation [14, 15, 139] which aims to learn mappings among imaging protocols to reduce
confounds in multicentre studies. Our results on image quality transfer [40] illustrate the po-
tential of the uncertainty modelling techniques to improve the safety of these applications by
not only improving the predictive accuracy, but also providing a mechanism to quantify risks
and safeguard against potential malfunction.
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Supplementary Material

A Different batch-size and data-size (comment R1.8)

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
3D-ESPCN(baseline) 6.378± 0.015 13.909± 0.071 8.998± 0.021 16.779± 0.109
+ Variational Dropout (I) 6.354± 0.015 13.824± 0.031 8.973± 0.024 16.633± 0.053
+ Variational Dropout (II) 6.356± 0.008 13.846± 0.017 8.982± 0.024 16.738± 0.073
+ Hetero. 6.294± 0.029 15.569± 0.273 8.985± 0.051 17.716± 0.277
+ Hetero. + Variational Dropout (I) 6.291± 0.012 13.906± 0.048 8.944± 0.044 16.761± 0.047
+ Hetero. + Variational Dropout (II) 6.287± 0.029 13.927± 0.093 8.955± 0.029 16.844± 0.109

Table 4: Super-resolution results on a smaller training dataset (when the number of subjects T = 8)
on diffusion tensor images (DTIs) of HCP dataset.

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
3D-ESPCN(baseline) 6.207± 0.015 13.609± 0.081 8.902± 0.017 16.389± 0.112
+ Variational Dropout (I) 6.192± 0.011 13.406± 0.037 8.871± 0.026 16.142± 0.052
+ Variational Dropout (II) 6.199± 0.014 13.471± 0.041 8.874± 0.030 16.230± 0.072
+ Hetero. 6.132± 0.027 15.482± 0.229 8.881± 0.039 17.221± 0.207
+ Hetero. + Variational Dropout (I) 6.120± 0.012 13.587± 0.048 8.835± 0.042 16.257± 0.051
+ Hetero. + Variational Dropout (II) 6.114± 0.011 13.618± 0.090 8.859± 0.029 16.382± 0.099

Table 5: Super-resolution results with a larger batch size (B = 32) on diffusion tensor images (DTIs)
of HCP dataset.

B ROC analysis on Fractional Anisotropy (comment R2.3)

Figure 12: Discrimination of “safe” voxels in the predicted high-resolution fractional anisotropy map
by thresholding on predictive uncertainty. Here a single 3D-ESPCN + Hetro. + Variational Dropout
(I) model is used to quantify the predictive uncertainty over each image volume. (a) the ROC curve
plots the true positive rate (TPR) against false positive rate (FPR) computed for a range of threshold
values on the foreground voxels in the training subjects. Best threshold (black dot) was selected such
that F1 score is maximised and is employed to separate “safe” voxels from “risky” ones; (b) the average
TPR and FPR over the 16 test HCP subjects and the 16 Lifespan subjects are shown; (c) an example
visualisation of the “ground truth” safe (black) and risky (red) voxels on a Lifespan subject along with
the corresponding classification results denoted as “warning”.
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C PSNR andMSSIM of DTI andMAP-MRI super-resolution
Here we quantify the performance of different super-resolution methods with two additional
metrics: PSNR and MSSIM.

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
CSpline- interpolation 32.75± n/a 26.78± n/a 25.28± n/a 20.82± n/a
β-Spline 33.18± n/a 20.28± n/a 25.32± n/a 15.34± n/a
IQT-RF 35.93± 0.01 27.66± 0.01 31.23± 0.01 26.42± 0.01
BIQT-RF 35.94± 0.03 28.67± 0.05 31.99± 0.02 26.27± 0.06
3dESPCN(baseline) 36.71± 0.02 32.33± 0.036 35.22± 0.02 30.28± 0.041
Dropout-CNN(0.1) 35.95± 0.04 31.82± 0.04 34.37± 0.04 29.89± 0.04
Gaussian-CNN(0.1) 36.52± 0.02 32.22± 0.02 34.98± 0.02 30.17± 0.03
+ Variational Dropout (I) 36.74± 0.02 32.38± 0.02 35.23± 0.02 30.41± 0.04
+ Variational Dropout (II) 36.73± 0.01 32.37± 0.02 35.21± 0.01 30.38± 0.02
+ Hetero. 36.93± 0.04 31.63± 0.12 35.33± 0.04 29.63± 0.12
+ Hetero. + Variational Dropout (I) 37.13± 0.02 32.21± 0.03 35.64± 0.03 30.21± 0.03
+ Hetero. + Variational Dropout (II) 37.14± 0.04 32.26± 0.04 35.66± 0.05 30.18± 0.06

Table 6: Super-resolution results on diffusion tensor images (DTIs) of HCP and Lifespan datasets for
different upsampling methods in PSNRs (dB). For each method, an ensemble of 10 models are trained
on different training sets generated by randomly extracting a set of patch pairs from the common 16
HCP subjects. For each model, the average PSNR over subjects in respective datasets is first computed
and the mean/std of such average PSNRs over the ensemble are then reported. Best results in bold
red, and the second best in blue.

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
CSpline -interpolation .9170± n/a .8242± n/a .9162± n/a .8251± n/a
β-Spline .9257± n/a .8249± n/a .9231± n/a .8193± n/a
IQT-RF .9582± .0002 .8816± 0.004 .9490± .0004 .8591± 0.005
BIQT-RF .9595± .0008 .8815± 0.007 .9501± .0011 .8597± 0.012
3dESPCN (baseline) .9627± .0002 .9286± .0006 .9532± .0001 .9066± .0006
Dropout(0.1) .9565± .0002 .9269± .0009 .9455± .0002 .9059± .0008
Gaussian(0.1) .9612± .0001 .9282± .0005 .9502± .0002 .9071± .0008
+ Variational Dropout (I) .9632± .0001 .9388± .0005 .9543± .0002 .9186± .0006
+ Variational Dropout (II) .9631± .0001 .9387± .0006 .9541± .0002 .9185± .0007
+ Hetero. .9644± .0002 .9181± .0014 .9557± .0002 .8950± .0011
Hetero + Variational Dropout (I) .9649± .0001 .9287± .0007 .9561± .0002 .9064± .0007
Hetero + Variational Dropout (II) .9652± .0001 .9288± .0007 .9563± .0002 .9067± .0006

Table 7: Super-resolution results on diffusion tensor images (DTIs) of HCP and Lifespan datasets for
different upsampling methods in MSSIM. For each method, an ensemble of 10 models are trained on
different training sets generated by randomly extracting a set of patch pairs from the common 16 HCP
subjects. For each model, the average MSSIM over subjects in respective datasets is first computed
and the mean/std of such average MSSIM over the ensemble are then reported. Best results in bold
red, and the second best in blue.
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Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
CSpline- interpolation 28.98± n/a 22.81± n/a 21.77± n/a 18.55± n/a
β-Spline 29.21± n/a 18.93± n/a 21.12± n/a 16.21± n/a
IQT-RF 33.87± 0.01 25.87± 0.01 29.71± 0.01 24.25± 0.01
BIQT-RF 33.81± 0.03 25.91± 0.05 29.41± 0.02 24.21± 0.06
3dESPCN(baseline) 35.39± 0.03 31.21± 0.04 33.82± 0.03 29.22± 0.03
Dropout-CNN(0.1) 35.41± 0.05 31.35± 0.04 34.04± 0.03 29.31± 0.02
Gaussian-CNN(0.1) 34.89± 0.05 30.71± 0.04 33.57± 0.04 28.85± 0.03
+ Variational Dropout (I) 35.95± 0.03 31.47± 0.03 34.33± 0.02 29.44± 0.04
+ Variational Dropout (II) 35.91± 0.02 31.61± 0.04 34.37± 0.01 29.46± 0.06
+ Hetero. 36.03± 0.04 30.20± 0.12 34.43± 0.04 28.82± 0.08
+ Hetero. + Variational Dropout (I) 36.31± 0.03 31.62± 0.03 34.91± 0.03 29.70± 0.05
+ Hetero. + Variational Dropout (II) 36.28± 0.03 31.71± 0.05 34.75± 0.03 29.58± 0.04

Table 8: Super-resolution results on MAP-MRIs of HCP and Lifespan datasets for different upsam-
pling methods in PSNRs (dB). For each method, an ensemble of 5 models are trained on different
training sets generated by randomly extracting a set of patch pairs from the common 16 HCP sub-
jects. For each model, the average PSNR over subjects in respective datasets is first computed and the
mean/std of such average PSNR metrics (×10−2) over the ensemble are then reported. Best results in
bold red, and the second best in blue. In addition, the performance of 3D-ESPCN and its probabilistic
variants trained on data without outlier removal are also included.

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
CSpline -interpolation .9010± n/a .8331± n/a .8838± n/a .8189± n/a
β-Spline .8971± n/a .8238± n/a .8911± n/a .8121± n/a
IQT-RF .9366± .0007 .8576± 0.005 .9289± .0007 .8382± 0.007
BIQT-RF .9353± .0006 .8585± 0.008 .9281± .0009 .8373± 0.013
3dESPCN (baseline) .9513± .0002 .9186± .0006 .9401± .0002 .8959± .0004
Dropout(0.1) .9517± .0003 .9196± .0009 .9434± .0004 .8966± .0009
Gaussian(0.1) .9477± .0003 .9173± .0005 .9349± .0003 .8957± .0009
+ Variational Dropout (I) .9539± .0002 .9208± .0007 .9439± .0003 .9065± .0005
+ Variational Dropout (II) .9530± .0003 .9199± .0008 .9445± .0004 .9072± .0006
+ Hetero. .9562± .0002 .9008± .0012 .9457± .0003 .8934± .0013
Hetero + Variational Dropout (I) .9577± .0002 .9285± .0007 .9471± .0003 .9168± .0006
Hetero + Variational Dropout (II) .9565± .0003 .9291± .0006 .9462± .0003 .9159± .0007

Table 9: Need to update the numbers. Super-resolution results on MAP-MRIs of HCP and Lifespan
datasets for different upsampling methods in MSSIM. For each method, an ensemble of 10 models
are trained on different training sets generated by randomly extracting a set of patch pairs from the
common 16 HCP subjects. For each model, the average MSSIM over subjects in respective datasets is
first computed and the mean/std of such average MSSIM over the ensemble are then reported. Best
results in bold red, and the second best in blue.

D Architectures of different depth for DTI and MAP-MR
super-resolution (comment R3.8)

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
3D-ESPCN(baseline) 6.164± 0.015 12.903± 0.088 8.331± 0.017 15.890± 0.082
+ Variational Dropout (I) 6.142± 0.014 12.785± 0.051 8.247± 0.031 15.714± 0.061
+ Variational Dropout (II) 6.149± 0.013 12.721± 0.050 8.278± 0.024 15.673± 0.070
+ Hetero. 6.076± 0.020 15.193± 0.43 8.175± 0.041 16.899± 0.095
+ Hetero. + Variational Dropout (I) 6.070± 0.017 12.797± 0.046 8.144± 0.038 15.694± 0.071
+ Hetero. + Variational Dropout (II) 6.081± 0.021 12.832± 0.075 8.162± 0.039 15.708± 0.063

Table 10: Super-resolution results on Diffusion Tensor Images of HCP and Lifespan datasets with a deeper
architecture with 6 convolution layers. All the CNN models have the receptive field of spatial size 143.
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Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
3D-ESPCN(baseline) 2.611± 0.122 9.979± 0.131 4.445± 0.167 12.421± 0.187
+ Variational Dropout (I) 2.488± 0.127 9.841± 0.190 4.227± 0.145 12.053± 0.181
+ Variational Dropout (II) 2.501± 0.128 9.749± 0.188 4.246± 0.144 12.018± 0.192
+ Hetero. 2.329± 0.110 11.950± 0.216 4.129± 0.146 12.599± 0.206
+ Hetero + Variational Dropout (I) 2.288± 0.139 9.699± 0.240 3.817± 0.211 11.522± 0.212
+ Hetero + Variational Dropout (II) 2.304± 0.121 9.723± 0.211 3.862± 0.218 11.907± 0.220

Table 11: Super-resolution results on MAP-MRIs of HCP and Lifespan datasets with a shallower architecture
with 3 convolution layers. In this case, all the CNN models have the receptive field of spatial size 53, thus
making it directly comparable with the previous state-of-the-art based on random forests.

E Tractography with MAP-MRI
Here we assessed the benefits of super-resolution with a tractography experiment on the Prisma
dataset, which contains two DWIs of the same subject at two different image resolutions—1.35
mm and 2.5 mm isotropic voxels, as detailed in Sec. 4.1. An ensemble of 10 best performing
CNN (3D-ESPCN+Hetero.+Variational Dropout(I)) is used to super-resolve the MAP-MRI
coefficients [97] derived from the low-resolution DWIs, and the ensemble predictions aggregated
into the final output by taking the average estimate weighted by the inverse of the estimated
intrinsic uncertainty. Lastly, the high-resolution multi-shell DWIs are obtained from this super-
resolved MAP volume. Specifically, the Spherical Mean Technique (SMT) is used to fit a
microscopic tensor model to the predicted dataset [140]. The voxel-by-voxel estimated model
parameters inform the spatially varying fibre response function that is used to recover the fibre
orientation distribution through spherical deconvolution. Afterwards, we perform probabilistic
tractography [141] with the fibre pathways randomly seeded in the brain. In a similiar fashion,
we also generate high-resolution datasets by using IQT-RF and linear interpolation.

Figure 13: Streamline maps of the probabilistic tractography [141] applied on Prisma dataset for different
upsampling methods and visualised with MRtrix3 [142]. From left to right: (i) High-res acquisition, (ii) CNN
(3D-ESPCN+Hetero.+Variational Dropout(I)) prediction; (iii) Random Forest IQT [40]; (iv) Linear interpola-
tion; (v) Low-res acquisition. The yellow arrows in the top row indicate the location of a false positive tract
detected in the low-resolution acquisition, whilst the green arrows in the bottom row show an example white
matter tract, which is more sharply reconstructed at high resolution.

Fig. 13 shows that IQT via our best performing CNN makes a tangible difference in down-
stream tractography. In the top row, tractography on the low-resolution data produces a false-
positive tract under the corpus callosum (yellow arrow), which tractography at high resolution
avoids. Reconstructured high-resolution images from IQT-RF and CNN predictions avoid the
false positive better than linear interpolation. Note that we do not expect to reproduce the
high-resolution tractography map exactly, as the high-resolution and low-resolution images are
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not aligned exactly and the high-resolution and prediction have different resolutions (1.35 mm
vs. 1.25 mm). The bottom row shows sharper recovery of small gyral white matter pathways
(green arrow) at high-resolution than low-resolution resulting from reduced partial volume ef-
fect. CNN reconstruction produces a sharper pathway than RF-IQT and linear interpolation,
more closely reflecting the high-resolution tractography.

F Effects of input noise on intrinsic uncertainty
Here we conduct a simple test of injecting artificial noise in the input data to validate the
estimation of intrinsic uncertainty for DTI super-resolution. For each component of the DTIs,
the standard deviation of the Gaussian noise is fixed and set to the product of the noise level and
the standard deviation calculated based on the training data population (e.g., if noise level is set
to 1, then each channel of DTI is corrupted by injecting Gaussian noise of the population-level
variance). Fig. 14 shows that the estimates highly correlate with the amount of the injected
noise, demonstrating that the magnitude of artificial measurement noise is well-captured by
the estimated intrinsic uncertainty.

Figure 14: Evaluation of estimated intrinsic uncertainty based on noise injection into the input low-res DTIs.
(a) shows examples of the DT component (Dxx) corrupted by Gaussian noise with different variance, and the
histograms over the training subjects. (b) plots the estimated intrinsic uncertainty from the heterozchedastic
model for different noise levels. For each noise level, a set of 10 3D-ESPCN + Hetero. are trained with the
corrupted inputs, and for each model instance, the mean and the median of the estimated intrinsic uncertainty
is calculated based on the HCP test subjects. The figure shows the average mean and median values, and their
standard deviations calculated over the model ensemble.
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