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Abstract. We propose a dual-task convolutional neural network (CNN)
to fully automate the real-time diagnosis of deep vein thrombosis (DVT).
DVT can be reliably diagnosed through evaluation of vascular compress-
ibility at anatomically defined landmarks in streams of ultrasound (US)
images. The combined real-time evaluation of these tasks has never been
achieved before. As proof-of-concept, we evaluate our approach on two
selected landmarks of the femoral vein, which can be identified with high
accuracy by our approach. Our CNN is able to identify if a vein fully
compresses with a F1 score of more than 90% while applying manual
pressure with the ultrasound probe. Fully compressible veins robustly
rule out DVT and such patients do not need to be referred to further
specialist examination. We have evaluated our method on 1150 5–10 s
compression image sequences from 115 healthy volunteers, which results
in a data set size of approximately 200k labelled images. Our method
yields a theoretical inference frame rate of more than 500 fps and we
thoroughly evaluate the performance of 15 possible configurations.

1 Introduction

Deep vein thrombosis (DVT) is caused by the formation of a blood clot within a
deep vein, that most commonly takes place in the leg. If left untreated, DVT may
lead to serious complications, including pulmonary embolism, which develops
when pieces of blood clot break loose into the bloodstream and block vessels in
the lungs. Typically, an average of one in a thousand people will be affected by
DVT and related conditions during their lifetime. 20% of patients die because of
DVT-related complications. Worldwide, approximately 10 million people suffer
from DVT or related conditions, estimates suggest that 100,000 Americans alone
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die of DVT each year [1]. Patients are referred for DVT-specific tests by front
line medical professionals, or following surgery. As the risk of DVT leading to
serious complications, including death, is high, development of DVT-focused
point-of-care diagnostics is of great importance.

There are two major challenges in diagnosing DVT. First, DVT does not
necessarily show evident symptoms and the symptoms may overlap with other
less serious conditions, making it impossible to discover DVT without clinical
tests. Second, the clinical routine method used to diagnose DVT is a D-dimer
blood test [2], which determines the concentration of a small protein fragment
in the blood that occurs when a blood clot is degraded by fibrinolysis. The D-
dimer blood test can with high certainty rule out a pulmonary embolism (PE),
the main DVT-related complication leading to death. However, while this test
shows a high sensitivity to PE it has a low specificity to early DVT and returns
a high number of false positives. Patients with false-positive D-dimer results are
referred to unnecessary further expert examinations, which is costly and time
consuming. Furthermore, the consequently introduced workload is very large
relative to the number of specialist DVT radiologists.

A more accurate screening method is the manual evaluation of vein compress-
ibility during ultrasound (US) examination of standardised anatomical locations
(usually at three specified landmarks on the femoral and popliteal veins [3], C-
US method). However, for front line medical professionals, it is currently difficult
to assess DVT using US since training is required to navigate to anatomically
defined landmarks on the veins where compressibility has to be evaluated.

Contribution: To solve this problem we propose an automatic, point-of-care
ultrasound (POCUS) image-based method to make DVT diagnostics accessi-
ble for front-line non-specialists. We propose a dual-task convolutional neural
network (CNN) that jointly classifies the anatomical landmark plane in the cur-
rent field-of-view and scores vein compressibility. Thus, the proposed AutoDVT
network can intrinsically learn to interpret video data to perform localisation,
segmentation, local deformation estimation and classification from weak global
labels. Furthermore, it is designed to require few floating point operations to
enable real-time performance and its accuracy is thoroughly evaluated on over
100 real, manually annotated ultrasound sequences from DVT examinations.

Related Work: Automated methods for DVT screening using ultrasound have
been subject to some research. They can be roughly categorised in image segmen-
tation and tracking approaches. Early approaches used specialised ultrasound
probe extensions to provide external tracking and pressure measurements [4].
Vessel segmentation has been achieved using semi-automatic initialisation (seed-
points) and heuristic intensity-based algorithms [5]. These approaches need man-
ual intervention, suffer from lack of robustness and real-time capabilities. More
recently Doppler flow measurements have been added to heuristically define com-
pressibility parameters derived from vessel segmentation masks [6]. While pro-
viding a high sensitivity of over 90% they generally suffer from low specificity
around 50% and are not fully automatic.



AutoDVT: Joint Real-Time Classification 907

Machine learning, especially deep learning, has recently shown to be highly
useful for ultrasound image analysis [7,8]. End-to-end training from clinical data,
high accuracy and real-time performance during model evaluation are essential
for tasks like POCUS DVT diagnostics. While vessel localisation has been shown
to be achievable through deep learning [9] we propose the first, fully automatic
deep learning vessel compressibility evaluation that enables a semantic under-
standing of anatomy based on only weakly-labelled ultrasound images.

2 Method

AutoDVT aims to automate the compression-based examination of DVT [10],
in which predefined landmarks on the femoral and popliteal veins are examined
with regards to their compressibility by manually applying pressure with the US
probe. DVT is suspected if any of the landmark veins is not fully compressible,
indicating the potential presence of a clot in the vein. We propose AutoDVT,
an end-to-end multi-task deep learning approach, which processes a stream of
freehand US images in real-time, and simultaneously determines the type of
relevant vessel landmark in the current frame and inspects its compressibility
during the exam. The synopsis of the proposed method is shown in Fig. 1.

Fig. 1. Overview of the proposed approach (a): A dual-task CNN evaluates a stream of
free-hand US frames in real-time and determines landmark type and compressibility.
Example for an uncompressed (b) and compressed (c) vein as seen at a landmark
position during diagnosis. Note that arteries do not compress during examination as
seen in (c).

Preprocessing: Our network is trained on ultrasound sequences acquired with
probes from different vendors. This makes inference more robust and more widely
applicable, but requires preprocessing. We automatically remove text informa-
tion from the frames, pad or crop to a common size of 600 × 600 pixels, and
downsample by a factor of 4 in each dimension to the size of 150 × 150 pixels.

The AutoDVT model is a deep CNN that jointly solves two classification
problems: (1) landmark (LM) detection i.e. a 3-way classification that discrim-
inates, whether a given frame shows either one of the two major landmarks
located on the femoral veins (FOVs), called LM1 and LM2 or any other anatomy,
which we refer to as BG (background); (2) open or closed (O/C) classification
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i.e. a binary classification if the present vein is open or closed. Based on the
predictions of the two classification tasks from an ultrasound video, AutoDVT
evaluates the vein compressibility of the two key landmarks in FOVs.

There are two important architectural choices that enable AutoDVT to accu-
rately perform these tasks. Firstly, the network operates on a stack of consecu-
tive frames and takes temporal information in a sequence into account through
3D convolutions. The network is thereby able to learn motion and deformation
features, which enhances the temporal consistency of the predicted landmarks
and open/closed state labels, particularly in the presence of noise and artifacts,
ubiquitous issues with handheld US probes. Secondly, we employ a multi-task
learning approach that shares the majority of convolutional layers across land-
mark localisation and vein compressibility. It branches out into task specific
layers only for the last layers (see Fig. 1). This enables us to leverage sequences
with partially missing labels (i.e. only for one task) and increases the amount
of overall training data. Our joint training therefore improves generalisation via
inductive transfer, where cues from one task regularise and improve the repre-
sentation for another related task [11].

The details of the shared layers and task-specific layers are given in Table 1.
All convolution layers (both 3D and 2D) are followed by rectified linear (ReLU)
non-linearity. We apply batch-normalisation after each convolution for improved
convergence and accuracy. In the task specific branches, dropout is used for every
convolution layer with a rate of 0.5 for regularisation. For each task, the feature
maps of the last convolution layers are spatially averaged, and fed into a linear
classifier with softmax output. We use relatively few feature map channels and
an aggressive progression of strided convolutions to limit both network capacity
and floating point operations. This enables us to avoid overfitting and realise
realtime performance for inference.

Table 1. Million floating point operations per second (MFlops, fused multiply-adds)
performance for each layer in our network model and Global average pooling (GAP).

Layer Shared layers Task-specific layers

Conv3d Conv3d Conv3d Conv3d Conv2d Conv2d Conv2d GAP Linear

Channels 32 32 64 64 128 128 128 128 #classes

Kernel 3× 3× 3 3× 3× 3 3× 3× 3 3× 3× 3 3× 3 3× 3 3× 3 2× 2 1× 1

Stride (2,2,1) (2,2,1) (2,2,1) (2,2,1) (1,1) (1,1) (1,1) N/A N/A

Size 150× 150× 9 74× 74× 7 36× 36× 5 17× 17× 3 8× 8 6× 6 4× 4 2× 2 1

MFlops 23.7 107.5 5.3 2.4 2.7 2.4 0.6 0.1 0.0

Model Training. Unless otherwise stated, we employ a common protocol for
the training of networks and determine best performing parameters experimen-
tally. The loss is defined as the sum of the cross-entropy from O/C and LM
classification, plus the L2 weight norm (weight decay) with a factor of 10−5. We
optimise the parameters by minimising the loss using ADAM for 50 epochs with
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an initial learning rate of 10−3, exponential decay every epoch, and a momen-
tum parameter β = [0.9, 0.999]. ADAM was chosen because it is known for its
stable and efficient optimisation performance. Values of β are chosen close to 1
to provide robustness to sparse gradients. The model from the last epoch is used
for evaluation. We adopt a data-augmentation scheme where training images are
randomly scaled, rotated, horizontally flipped and intensity-augmented.

3 Data and Experiments

Data Collection and Annotation: We have trained our model on manually
labelled data from 115 healthy volunteers. Images have been acquired using a
Clarius L7 Handheld Wireless Ultrasound Scanner, a Phillips iU22, a GE Logiq
E9, and a Toshiba Aplio 500. The dataset is comprised of 1150 videos of length
5–10 s. Each sequence contains between 100 to 200 frames. In this paper we
focus on landmark labels from a subset of 240 annotated sequences from the
groin area. In each sequence, images have been labelled by 25 skilled annotators
(medical students) and one radiologist as one of four landmark labels. We sample
background from random frames without labels in these 240 videos and from
additional 340 sequences that have been acquired from areas surrounding the
femoral vein. We use two of the four available locations, thus, landmarks are
located at the saphenofemoral junction (LM1) and great saphenous vein (LM2).
Open/close binary labels are manually obtained for every frame by labelling
and counting the number of vein pixels, i.e. measuring the area and a defined
threshold. The O/C labels have been reviewed by an experienced radiologist. 60%
of the volunteer examinations have been used for training, 20% for validation
and 20% for testing. We split the data on subject level and not per sequence to
avoid unfair testing.

Classification Performance Experiments: We evaluate the predictive per-
formance of AutoDVT in O/C and LM image classification (O/C, LM1, LM2
vs. background BG). We measure the performance on standard metrics used
for classification tasks: precision, recall and F1 score, and perform an ablation
study to quantify the effects of the main three proposed features of our approach:
data-augmentation, modelling temporal information with 3D convolutions and
dual-task formulation. Table 2 summarises the results of this analysis.

To demonstrate the benefits of the dual-task architecture of AutoDVT, we
constructed two task-specific baseline networks for O/C classification and LM
classification by only retaining the shared layers and the individual branch for
the chosen task. The two baseline networks have the same target classes for
respective tasks as the AutoDVT model, enabling a direct evaluation of the
regularisation effect gained from shared representation.

We also assessed the effect of modelling temporal information on classification
performance. We implemented variants of the dual-task AutoDVT architecture
and the task-specific networks in which every 3D convolution layer is replaced
by a 2D convolution with appropriately increased number of kernels (keeping
overall numbers of parameters the same).
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4 Results and Discussion

Table 2 shows that the best average F1 scores (the harmonic mean of preci-
sion and recall) of 91% and 78% are achieved by the dual-task model with
+Aug. +Temp. on O/C and LM classification, respectively. It is evident that
our dual-task approach outperforms the single-task baselines (+Aug. +Temp.),
in particular for the clinically most relevant compressibility analysis (O/C).

It is also clear that analysing a stack of nine consecutive frames with 3D
convolutions (denoted by +Temp.) improves the F1 score compared to a static
2D image analysis, which also results in temporally more consistent classification
in the presence of artefacts and noise. This indicates that the temporal network
alleviates these challenges by augmenting the missing information using temporal
context from the previous frames and estimates useful deformation features.

Table 2. Average performance of different models with best results in bold. +Temp.
denotes the integration of spatial-temporal convolutions on nine frames (i.e. 3D convo-
lutions) and +Aug. denotes the use of data augmentation during training. For single-
task baselines, the results for two task-specific networks (one for O/C classification
and the other for LM classification) are shown in each row of the table. AutoDVT
corresponds to the dual-task model +Aug.+Temp.

Precision Recall F1 score

O/C LM1 LM2 BG O/C LM1 LM2 BG O/C LM1 LM2 BG

Separate models 0.78 0.70 0.54 0.94 0.92 0.60 0.35 0.97 0.84 0.64 0.43 0.95

+Aug. 0.85 0.63 0.53 0.93 0.88 0.86 0.67 0.94 0.88 0.73 0.59 0.96

+Aug.+Temp. 0.85 0.69 0.63 0.96 0.92 0.82 0.61 0.96 0.88 0.75 0.62 0.96

Dual-task models 0.77 0.41 0.41 0.97 0.97 0.91 0.34 0.90 0.86 0.57 0.37 0.93

+Aug. 0.83 0.66 0.53 0.95 0.92 0.68 0.41 0.96 0.88 0.67 0.46 0.96

+Aug.+Temp. 0.89 0.67 0.56 0.97 0.92 0.87 0.64 0.96 0.91 0.76 0.60 0.97

Runtime Performance: Table 1 shows the number of million floating point
operations (MFlops) for AutoDVT for each layer. Current mobile GPUs can
provide up to 384 GFlops (e.g. PowerVR GT7600 Plus), while AutoDVT only
requires 148 MFlops, which would result in a theoretical computational overhead
of 0.002 s when accounting for approximately 60% overhead for memory transfers
and caching. Practically the frame-rate is limited by the image acquisition rate
of the ultrasound probe, which is ∼20 fps. Thus, using our K80 GPU yields an
application performance of ∼20 fps and ∼14 fps when using a Xeon E5-2686v4
CPU without GPU. We observed real-time frame rates for the implementations
of AutoDVT model in two deep-learning frameworks, Theano and PyTorch.
The dual-task architecture requires 50% fewer computations than running two
separate task-specific networks (which amounts to 290 MFlops vs. 148 MFlops
of AutoDVT).
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Visual Exploration of Results: We used Gradient-weighted Class Activation
Mapping (Grad-CAM) [12] to gain insight into which areas are considered by
AutoDVT to make predictions. Figure 2 shows the obtained saliency maps, which
qualitatively confirms that the model focuses on the relevant anatomy and makes
the correct O/C and LM classifications in the example frames.

Fig. 2. Visualisation of saliency maps of AutoDVT (MT+A.+T.) for O/C classifica-
tion, obtained by applying Grad-CAM [12] to sample frames in a compression sequence
at LM1. The super-imposed heatmaps (red is high, blue is low) indicate that AutoDVT
prediction is most excited by the anatomically relevant areas around the femoral vein.
(a–c) shows uncompressed state, (d, e) show compressed state, (f, g) show release of
manual pressure. (h) shows a summary for a random example compression sequence
with the predicted vessel compression state in red and the ground truth label in green.
Note that, when the vessel is entirely closed, i.e. invisible, our method predicts the
’closed’ state from spatio-temporal information and other structures in the image.

Limitations: This work focuses on DVT diagnosis in the groin area. Further
evaluation will be required to confirm similar performance for all possible land-
marks used during DVT examination especially in the area of the popliteal veins.
Like most deep learning methods, domain shift is still a challenge despite having
trained on data from four different devices. We are aware of the option to use
Doppler ultrasound as additional source of information. However, the aim of this
work is to make DVT diagnostics available for point-of-care applications. Doppler
reduces the image acquisition frame rate significantly, needs to be adjusted by an
experienced operator and does not necessarily increase detection rate of asymp-
tomatic DVT [10]. Furthermore, not all POCUS transducers support Doppler
imaging. A pure image-based approach is therefore desirable for POCUS DVT
diagnostics and potential applications in ODE countries.

Conclusion: We have proposed a novel dual-task CNN to assist the real-time
diagnosis of DVT. Our approach enables non-expert health practitioners to reli-
ably support DVT diagnosis using machine learning guidance. Previous work [6]
shows that 100% sensitivity and specificity can be reached for semi-automatic
DVT classification and that also venous pressure can be determined [13]. Our
approach can automate several of the currently required manual steps to achieve
this level of diagnostic accuracy on a range of different devices. AutoDVT eval-
uates vascular compressibility at two anatomically classified landmark positions
on the femoral vein. Landmark detection and compression state inference can
be combined in a joint dual-path network and the tasks can be trained end-to-
end. Our approach shows promising performance at accuracies greater than 90%,
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which is well within the expected performance of expert examinations [3]. Three
architectural choices: joint learning of open/close discrimination and landmark
detection; data augmentation and careful restriction of model capacity as well
as spatio-temporal convolutions, enabled substantial improvements in accuracy
compared to baseline models. Our approach provides real-time performance and
the potential to be used directly on mobile devices for POCUS diagnostics with
significant impact on patient care and health care costs. In future work, we will
evaluate our method on a more comprehensible dataset including patients with
pathologies and generalise landmark classification to all relevant areas along the
femoral vein.
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