Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution

Ryutaro Tanno, Daniel Worrall, Aurobrata Ghosh, Enrico Kaden, Stamatios N. Sotiropoulos, **Antonio Criminisi, Daniel C. Alexander**

20th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI 2017) September 2017, Quebec

What is Image Quality Transfer? 🚔 U 📿

humanconnectome.org [Sotiropoulos et al. NIMG 2013]

Clinical scanners

- Low spatial resolution and SNR
- Time and cost pressure
- So, limited quality of subsequent analysis

[Alexander et al. NIMG'17, Tanno et al. MICCAI'16]

Image Quality Transfer (IQT)

- Machine learning for quality enhancement
- Propagating information in high quality data from special scanners.

What is Image Quality Transfer? 🚔 U 📿 🛓

- **Random forest IQT** [Alexander et al. MICCAI'14, NIMG'17] D
 - 1. super-resolution of DTI/MAP-MRI and downstream tractography
 - 2. estimation of advanced microstructure contrasts (e.g. NODDI, SMT) from DTIs.

What is Image Quality Transfer? 🖆 U 📿 🗌

- **Random forest IQT** [Alexander et al. MICCAI'14, NIMG'17]
 - 1. super-resolution of DTI/MAP-MRI and downstream tractography
 - 2. estimation of advanced microstructure contrasts (e.g. NODDI, SMT) from DTIs.

LIMITATION: no indication of **uncertainty** in predicted enhanced image

- **Bayesian IQT** [Tanno et al. MICCAI'16]
 - 1. proposed a locally Bayesian variant of random forests
 - 2. estimate of predictive uncertainty which highly correlates with accuracy

Multiple sclerosis

Tumour

- Goal: Devise a deep learning implementation of Bayesian IQT
- Promising applications of deep learning to related problems:
 - 1. super-resolution, e.g. cardiac MRI [Oktay et al. MICCAI'16]

 - 3. sparse MR reconstruction: [Schlemper et al. IPMI'17, Mardani et al. 2017]
 - 4. denoising: [Gondara et al. 2016, Jifara et al. 2017]
 - 5. dealiasing, motion correction: [Yu et al. 2017]
- This work aims to:

1. test performance benefits of deep learning to IQT

2. explore ways to estimate different types of uncertainty in quality enhancement

Demonstrate in **super-resolution** of diffusion MR


```
2. contrast transfer, e.g. predicting 7T contrast from 3T image [Bahrami. MICCAI'17]
```


Low-res input

High-res prediction

IQT

Baseline 3D super-resolution network

2D Illustration

Low-res

 Trained to minimise average pixel-wise MSE • Two advances: **3D Extension of ESPCN**

ESPCN = Efficient Subpixel Convolutional Network, [Shi et al. CVPR'16]

High-res

- last conv. + shuffle = deconv. = learned interpolation
 - (II). Probabilistic Extensions for Modelling Uncertainty

Uncertainty Modelling

Model two components of uncertainty in super-resolution

- More generalisable prediction
- Quantification of reliability (e.g., confidence interval)

Intrinsic Uncertainty: Heteroscedastic noise model

• Model intrinsic uncertainty as a spatially varying multivariate Gaussian distribution [Nix et al. 1994]

- Jointly optimised to minimise the negative log likelihood on observations $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_i^{|\mathcal{D}|}$

$$\mathcal{L}_{ heta}(\mathcal{D}) = -\sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D}} \log$$

• No parameter sharing between mean and covariance networks

Dual network architecture: two separate 3D-ESPCNS to estimate the mean and covariance of the Gaussian likelihood.

 $\log \mathcal{N}(\mathbf{y}_i; \mu_{\theta_1}(\mathbf{x}_i), \Sigma_{\theta_2}(\mathbf{x}_i))$

Parameter Uncertainty: Variational Dropout

- Previous methods rely on a **single estimate of weights** (vulnerable to overfitting) => look at the distribution over weights given data i.e. posterior $p(\theta | \mathcal{D})$
- For input **x**, estimate the **predictive distribution** for output **y** by **averaging over** all possible **models** weighted by the **posterior** dist. over the weights:

$$p(\mathbf{y}|\mathbf{x}, \mathcal{D}) = \int p(\mathbf{y})$$

Predictive distribution

Likelihood model **Posterior over weights**

But **posterior** $p(\theta|\mathcal{D})$ is intractable \bullet

Why Variational Dropout?

=> Dropout probabilities are learned during training: no grid search is required.

 $\mathbf{y}|\mathbf{x}, heta,\mathcal{D})p(heta|\mathcal{D})d heta$

=> approximate with a Gaussian dist. $q_{\phi}(\theta)$ using Variational Dropout [Kingma et al. NIPS'15]

Combine intrinsic uncertainty and parameter uncertainty 🛓 UIC

Predictive distribution becomes

$$p(\mathbf{y}|\mathbf{x}, \mathcal{D}) \approx \int \mathcal{N}(\mathbf{y}; \mu_{\theta_1}(\mathbf{x}), \Sigma_{\theta_2}(\mathbf{x})) \cdot q_{\phi}(\theta) d\theta$$

Likelihood hetero. noise model intrinsic uncertainty

- Estimate the predictive mean and predictive uncertainty (variance).

Posterior var. dropout parameter uncertainty

MC dropout test time: run multiple forward passes and collect many samples $\{\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, ..., \mathbf{y}^{(T)}\}$

Uncertainty

Method Evaluation Strategy

- We will show the proposed deep learning methods:
 - are more accurate and faster on 3D super-resolution of DTIs. (|)
 - (II) **benefit tractography** through super-resolution of MAP-MRI.
 - (III) produce a useful estimate of **predictive uncertainty**.

- **Trained** on 8 randomly selected subjects from HCP dataset (age 22 36) (low-res = 2.5 mm and high-res = 1.25 mm isotropic voxels)
- **Evaluated** performance on two datasets (a) (within train dist.): 8 unseen subjects from the same HCP cohort. (outside train dist.): 10 subjects from Lifespan dataset (older age 45 - 75, different protocol) (b)

•**Computed errors:** Root-Mean-Squared-Error (RMSE) on the interior and exterior regions separately.

Models	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterior)
Cubic interpolation	$10.069\pm$ n/a	$31.738\pm$ n/a	$32.483\pm$ n/a	$49.066 \pm { m n/a}$
BIQT-Random-Forests (published best method)	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.290
3D-ESPCN(baseline network)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.109

Forests Random **B Q**

- HCP: 3D-ESPCN: 8.5% $\frac{1}{2}$ (interior), 39.8% $\frac{1}{2}$ (exterior) reduction in RMSE from BIQT-RF, p < 0.001 **Lifespan**: 3D-ESPCN: 9.3% \rightarrow (interior), 33.4% \rightarrow (exterior), p < 0.001
- Very fast: 1s on a GPU and 10s on a CPU while BIQT-RF takes 10 mins.

RMSE (mm²s⁻¹)

Models	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterior)
Cubic interpolation	$10.069\pm$ n/a	$31.738\pm$ n/a	$32.483\pm$ n/a	$49.066 \pm n/a$
BIQT-Random-Forests (published best method)	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.290
3D-ESPCN(baseline network)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.109

(baseline CN S 30

- HCP: 3D-ESPCN: 8.5% $\frac{1}{2}$ (interior), 39.8% $\frac{1}{2}$ (exterior) reduction in RMSE from BIQT-RF, p < 0.001 **Lifespan**: 3D-ESPCN: 9.3% \rightarrow (interior), 33.4% \rightarrow (exterior), p < 0.001
- Very fast: 1s on a GPU and 10s on a CPU while BIQT-RF takes 10 mins.

RMSE (mm²s⁻¹)

ed models	Models
	Cubic interpolation
	BIQT-Random-Fe
	3D-ESPCN(basel
	Hetero-Noise-CNI
	Variational-Dropo
as	Variational-Drope
	Hetero-Noise-CNI
	Hetero-Noise-CNI
S 🕷	

odels	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterior)
bic interpolation	$10.069\pm$ n/a	$31.738\pm$ n/a	$32.483\pm$ n/a	$49.066 \pm {\rm n/a}$
QT-Random-Forests (published best method)	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.290
-ESPCN(baseline network)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.109
tero-Noise-CNN	6.294 ± 0.029	15.569 ± 0.273	8.985 ± 0.051	17.716 ± 0.277
riational-Dropout (I)-CNN	6.354 ± 0.015	13.824 ± 0.031	8.973 ± 0.024	$\textbf{16.633} \pm \textbf{0.053}$
riational-Dropout (II)-CNN	6.356 ± 0.008	13.846 ± 0.017	8.982 ± 0.024	16.738 ± 0.073
tero-Noise-CNN+Variational-Dropout (I)	6.291 ± 0.012	13.906 ± 0.048	8.944 ± 0.044	16.761 ± 0.047
tero-Noise-CNN+Variational-Dropout (II)	$\boldsymbol{6.287\pm0.029}$	13.927 ± 0.093	8.955 ± 0.029	16.844 ± 0.109

best

• **TOP2 models:** Hetero-Noise + Variational-Dropout (interior) & Variational-Dropout only (exterior) (better than the baseline with p<0.001) 2nd best

RMSE (mm²s⁻¹)

Experiment (II): Benefits in Tractography

Separate high-res and low-res acquisitions, "Prisma" dataset, [Alexander et al., NIMG'17]

• (yellow arrows): avoids the false positive tract under the corpus callosum • (blue arrows): shaper recovery of small gyral white matter pathways

Experiment (III): Predictive Uncertainty Comparison on a test HCP subject

Ground truth Low-res input

Prediction

Error

Uncertainty

Experiment (III): Predictive Uncertainty Testing on a clinical image of a brain tumour patient

• Used the best model: Hetero + Var. (II) Highlights pathology with high uncertainty

Take Home Messages

- A minimal CNN model achieves state-of-the-art performance and speed in super-resolution of dMRI, with tangible benefits in tractography.
- Modelling intrinsic and parameter uncertainty improves accuracy.
- Predictive uncertainty can be potentially used as a safeguard against failures in predictions.
- Applicable to many other image analysis problems

Acknowledgements

Daniel Worrall

Aurobrata Ghosh

Antonio Criminisi

Enrico Kaden

Stamatios Sotiropoulos

Come and talk to us! poster #70 today @10:30 am

Daniel C. Alexander

NHS National Institute for Health Research

Appendix: risk assessment with predictive uncertainty

Can discriminate risky voxels with 94% accuracy

ROC

Appendix: decompose predictive uncertainty into sources 📥 🛛 🦳

- **Decompose** the predictive uncertainty into two sources:

$$\mathbb{V}_{p(\mathbf{y}|\mathbf{x},\mathcal{D})}[\mathbf{y}] = \mathbb{E}_{p(\theta|\mathcal{D})} \left[\mathbb{V}_{p(\mathbf{y}|\mathbf{x},\mathcal{D})}[\mathbf{y}] - \mathbb{V}_{p(\mathbf{y}|\theta,\mathbf{x},\mathcal{D})}[\mathbf{y}|\theta] \right] + \mathbb{E}_{p(\theta|\mathcal{D})} \left[\mathbb{V}_{p(\mathbf{y}|\theta,\mathbf{x},\mathcal{D})}[\mathbf{y}|\theta] \right]$$

$$= \underbrace{\mathbb{V}_{p(\theta|\mathcal{D})}[\mathbb{E}_{p(\mathbf{y}|\theta,\mathbf{x},\mathcal{D})}[\mathbf{y}|\theta]]}_{\text{propagated parameter uncertainty}} + \underbrace{\mathbb{E}_{p(\theta|\mathcal{D})}[\mathbb{V}_{p(\mathbf{y}|\theta,\mathbf{x},\mathcal{D})}[\mathbf{y}|\theta]]}_{\text{propagated intrinsic uncertainty}}$$

Simplify this for the heteroscedastic + var. dropout model that:

Unbiased MC estimators:

$$\widehat{\Delta}_{m}(\mathbf{y}) = \frac{1}{T} \sum_{t=1}^{T} \mu_{\theta_{1}^{t}}(\mathbf{x}) \mu_{\theta_{1}^{t}}(\mathbf{x})^{T} - \widehat{\mu}_{\mathbf{y}|\mathbf{x}} \widehat{\mu}_{\mathbf{y}|\mathbf{x}}^{T}$$
$$\widehat{\Delta}_{i}(\mathbf{y}) = \frac{1}{T} \sum_{t=1}^{T} \Sigma_{\theta_{2}^{t}}(\mathbf{x})$$

Predictive uncertainty arises from the combination of two sources: intrinsic and parameter uncertainty.

$$\Delta_m(\mathbf{y}) = \mathbb{V}_{p(\theta_1|\mathcal{D})}[\mu_{\theta_1}(\mathbf{x})]$$
$$\Delta_i(\mathbf{y}) = \mathbb{E}_{p(\theta_2|\mathcal{D})}[\Sigma_{\theta_2}(\mathbf{x})]$$

Appendix: Decomposition of predictive uncertainty Training data size vs uncertainty components

Propagated nsic Uncertainty Intrinsic Propagated neter Uncertainty arameter

N=3500

0

Appendix: Decomposition of predictive uncertainty

Error (RMSE)

Propagated Intrinsic Uncertainty

Propagated Parameter Uncertainty

Showing RMSE in Mean Diffusivity

Showing RMSE in Mean Diffusivity

Showing RMSE in Mean Diffusivity

