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What is Image Quality Transfer? *{UJCIL
humanconnectome.org

[Sotiropoulos et al. NIMG 2013]
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- Propagating information in high

[Alexander et al. NIMG’17, Tanno et al. MICCAI'16] qua"ty data from spemal scanners.



What is Image Quality Transfer? 2{JCIL

Random forest IQT [Alexander et al. MICCAI'14, NIMG’17]
1. super-resolution of DTI/MAP-MRI| and downstream tractography

2. estimation of advanced microstructure contrasts (e.g. NODDI, SMT) from DTls.

High-res gold standard Low-res input Interpolation Random Forest IQT




What is Image Quality Transfer? 2JCL

« Random forest IQT [Alexander et al. MICCAI'14, NIMG’17]
1. super-resolution of DTI/MAP-MRI| and downstream tractography
2. estimation of advanced microstructure contrasts (e.g. NODDI, SMT) from DTIs.

LIMITATION: no indication of uncertainty in predicted enhanced image

e Bayesian IQT [Tanno et al. MICCAI'16]
1. proposed a locally Bayesian variant of random forests

2. estimate of predictive uncertainty which highly correlates with accuracy

Uncertainty Multiple sclerosis Tumour

Uncertaintv



Goals

*UCL

* Goal: Devise a deep learning implementation of Bayesian IQT

 Promising applications of deep learning to related problems:

1. super-resolution, e.g. cardiac MRI [Oktay et al. MICCAI'16]

2. contrast transfer, e.qg. predicting 7T contrast from 3T image [Bahrami. MICCAI'17]
3. sparse MR reconstruction: [Schlemper et al. IPMI'17, Mardani et al. 2017]

4. denoising: [Gondara et al. 2016, Jitara et al. 2017]

5. dealiasing, motion correction: [Yu et al. 2017]

e This work aims to:

1. test performance benefits of deep learning to IQT

2. explore ways to estimate different types of uncertainty in quality enhancement

 Demonstrate in super-resolution of diffusion MR



Super-resolution as patch-regression

*UCL

Low-res input High-res prediction

2D lllustration



Baseline 3D super-resolution network £

2D lllustration

ESPCN = Efficient Subpixel Convolutional Network,
[Shi et al. CVPR'16
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e Jast conv. + shuffle = deconv. = learned interpolation
* Trained to minimise average pixel-wise MSE
e Two advances:

(). 3D Extension of ESPCN

(I1). Probabilistic Extensions for Modelling Uncertainty



Uncertainty Modelling

 Model two components of uncertainty in super-resolution

(1) Intrinsic uncertainty

low-res, X high-res, y
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iINnherent ambiguity in the problem e.g. one-
to-many nature of super-resolution mapping.
cannot be reduced even with infinite data.

= More generalisable prediction

= Quantification of reliability (e.g., confidence interval)

(i) Parameter uncertainty

Estimated
® mean

e X

ambiguity in the choice of “best” model
parameters.
can be explained away with infinite data



Intrinsic Uncertainty:

Heteroscedastic noise model

® Model intrinsic uncertainty as a spatially varying multivariate Gaussian distribution [Nix et al. 1994]
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* Dual network architecture: two separate 3D-ESPCNS to estimate the mean and covariance of the Gaussian likelihood.

 Jointly optimised to minimise the negative log likelihood on observations D = {x;, yi}!&.DI

Lo(D)=— > log N(ys; pa, (%), Say(xi))

(x4,y:)€D

* No parameter sharing between mean and covariance networks



Parameter Uncertainty:

Variational Dropout

* Previous methods rely on a single estimate of weights (vulnerable to overtitting)
=> |ook at the distribution over weights given data i.e. posterior p(6|D)

* [Forinput x, estimate the predictive distribution for output y by averaging over all possible
weighted by the posterior dist. over the weights:

p(y|x,D) = [ p(yl|x, 0, D) a6

Predictive distribution Posterior over weights

* But .... posterior p(8|D) is intractable

=> approximate with a Gaussian dist. ¢4 (0) using Variational Dropout [Kingma et al. NIPS’15]

 Why Variational Dropout?

=> Dropout probabilities are learned during training: no grid search is required.



Combine intrinsic uncertainty and parameter uncertainty g
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Posterior
var. dropout
parameter uncertainty

* MC dropout test time: run multiple forward passes and collect many samples {y(l), y(z), ceey y(T)}

* Estimate the predictive mean and predictive uncertainty (variance).



Method Evaluation Strategy

We will show the proposed deep learning methods:
(I) are more accurate and faster on 3D super-resolution of DTIs.
(Il) benefit tractography through super-resolution of MAP-MRI.

(I11) produce a useful estimate of predictive uncertainty.



Experiment (I): x2 DTl Super-resolution (2.5 mm => 1.25 mm)

Comparison on HCP and Lifespan dataset &

e Trained on 8 randomly selected subjects from HCP dataset (age 22 - 36)
(low-res = 2.5 mm and high-res =1.25 mm isotropic voxels)

e Evaluated performance on two datasets

(a) (within train dist.): 8 unseen subjects from the same HCP cohort.
(b) (outside train dist.): 10 subjects from Lifespan dataset (older age 45 - 75, ditterent protocol)

eComputed errors: Root-Mean-Squared-Error (RMSE) on the and regions separately.




Experiment (I): x2 DTl Super-resolution (2.5 mm => 1.25 mm)

i

Comparison on HCP and Lifespan dataset
RMSE (mm32s-1)

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
Cubic interpolation 10.0694+ n/a 31.7384 n/a 32.483+ n/a  49.066+ n/a
BIQT-Random-Forests (published best method) 6.972 + 0.069 23.110 = 0.362 9.926 + 0.055 25.208 + 0.290
3D-ESPCN(baseline network) 6.378 + 0.015 13.909 + 0.071 8.998 +0.021  16.779 4 0.109
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e HCP: 3D-ESPCN: 8.5% " (interior), 39.8% " (exterior) reduction in RMSE from BIQT-RF, p < 0.001
Lifespan: 3D-ESPCN: 9.3% “ (interior), 33.4% “ (exterior), p < 0.00°
e Very fast: 1s on a GPU and 10s on a CPU while BIQT-RF takes 10 mins.




Experiment (I): x2 DTl Super-resolution (2.5 mm => 1.25 mm)

i

Comparison on HCP and Lifespan dataset
RMSE (mm32s-1)

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
Cubic interpolation 10.0694+ n/a 31.7384 n/a 32.483+ n/a  49.066+ n/a

BIQT-Random-Forests (published best method) 6.972 £+ 0.069 23.110 == 0.362 9.9206 £ 0.055  25.208 = 0.290
3D-ESPCN(baseline network) 6.378 £0.015  13.909 + 0.071 8.998 £0.021 16.779 £ 0.109
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3D-ESPCN (baseline)

e HCP: 3D-ESPCN: 8.5% " (interior), 39.8% " (exterior) reduction in RMSE from BIQT-RF, p < 0.001
Lifespan: 3D-ESPCN: 9.3% " (interior), 33.4% " (exterior), p < 0.00°
e Very fast: 1s on a GPU and 10s on a CPU while BIQT-RF takes 10 mins.




Experiment (I): x2 DTl Super-resolution (2.5 mm => 1.25 mm)

i

Comparison on HCP and Lifespan dataset
RMSE (mm32s-1)

Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
Cubic interpolation 10.0694+ n/a  31.738+ n/a 32.483+ n/a  49.066+ n/a

BIQT-Random-Forests (published best method) 6.972 = 0.069  23.110 = 0.362 9.926 = 0.055  25.208 == 0.290
3D-ESPCN (baseline network) 6.378 £ 0.015  13.909 4+ 0.071 8.998 +0.021  16.779 +0.109
Hetero-Noise-CNN 6.294 4+ 0.029 15.569 + 0.273 8.985 £ 0.051 17.716 £ 0.277

Variational-Dropout (I)-CNN 13.824 +0.031 8.973+0.024 16.633 +0.053
Variational-Dropout (II)-CNN 13.846 = 0.017 8.982 =0.024  16.738 = 0.073

Hetero-Noise-CNN+Variational-Dropout (I) 13.906 £ 0.048 8.944 +0.044 16.761 £ 0.047
Hetero-Noise-CNN+Variational-Dropout (II) 13.927 + 0.093 8.955 + 0.029 16.844 4 0.109

best
e TOP2 models: Hetero-Noise + Variational-Dropout (interior) & Variational-Dropout only (exterior)

ond best (Detter than the baseline with p<0.001)



Experiment (ll): Benefits in Tractography 2

Separate high-res and low-res acquisitions, “Prisma” dataset, [Alexander et al., NIMG’17]

Ours (CNN) Linear Int. Low-res
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Experiment (lll): Predictive Uncertainty

: : h
Comparison on a test HCP subject UCL
Low-res input  Ground truth Prediction Error Uncertainty
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- Mean and std estimated from 200 samples of predicted high-res DTls with Hetero+Var.(l) model



Experiment (lll): Predictive Uncertainty
Testing on a clinical image of a brain tumour patient

Clinical image After Super-res Uncertainty high

Used the best model: Hetero + Var. (ll)
Highlights pathology with high uncertainty



Take Home Messages

A minimal CNN model achieves state-of-the-art performance and speed in
super-resolution of dMRI, with tangible benefits in tractography.

 Modelling intrinsic and parameter uncertainty improves accuracy.

* Predictive uncertainty can be potentially used as a safeguard against failures in
poredictions.

 Applicable to many other image analysis problems
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Appendix: risk assessment with predictive uncertainty 2

Uncertainty

True Positive Rate
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» Can discriminate risky voxels with 94% accuracy

Warning

TPR=0.81, FPR=0.06

Risky voxels




Appendix: decompose predictive uncertainty into sources

* Predictive uncertainty arises from the combination of two sources: and parameter uncertainty.

* Decompose the predictive uncertainty into two sources:

Voylx D) Y] =

Vo10) [Ep(y16,x,0) ¥ 10]]
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201D) | Vy . D) Y] = Vv, D) [Y10]] + Epo10) [ Vtylo,x,0) [¥10]
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propagated parameter uncertainty  propagated intrinsic uncertainty

A (y) +Ai(y)

+  Simplify this for the heteroscedastic + var. dropout model that: A, (y) — Vp(gl‘p) [[Lgl (X)]

» Unbiased MC estimators: Z pgt (X

Ai(y) = Ep,1p) 20, (X)]
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Appendix: Decomposition of predictive uncertainty
Training data size vs uncertainty components

|| N = no. of

N=3500 N= 7000 N=14000 data points

Propagated
Intrinsic Uncertainty

1.0
0.0
0.1
0.0

Propagated
Parameter Uncertainty




Appendix: Decomposition of predictive uncertainty & u CI_

Propagated Propagated
Error (RMSE) Intrinsic Uncertainty Parameter Uncertainty

e Small training set (~ 3000 patch pairs) Benign cyst
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Appendix: performance on abnormality (1/2)



Appendix: performance on abnormality (2/2) =

Showing RMSE in Mean Diffusivity

Cubic Interpolation




Appendix: performance on abnormality (2/2) =

Showing RMSE in Mean Diffusivity

BIQT-Random-Forest




Appendix: performance on abnormality (2/2) =

Showing RMSE in Mean Diffusivity

3D-ESPCN




