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Results

Clinical image After SR Uncertainty

 Fig.5 Comparison between RMSE and uncertainty maps for FA and MD computed on a HCP subject. 
LR input, ground truth and HR prediction are also shown. 

 Fig.6 DTI SR on a brain tumour patient. From top to bottom: (i) MD computed from the original DTI; 
(ii) the estimated HR version; (iii) uncertainty. 

• Image quality transfer (IQT) [1] is a machine-learning based framework to enhance low quality 
images (e.g. clinical data) by learning and propagating rich information from rare high quality 
images from expensive scanners (e.g. HCP data).  

• We propose a Bayesian extension of IQT based on probabilistic deep learning methods.  
• We demonstrate in super-resolution of dMRI. 
• Results show: 

1. our method improves reconstruction accuracy. 
2. our method shows tangible benefits in downstream tractography. 
3. our method provides a means to estimate uncertainty over prediction, which can be 

used as a surrogate measure of accuracy. Low Quality
(3T scanner)

High Quality
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Background (IQT framework)
• Super-resolution as a patch-wise regression as in [1, 2]. 
• Training data generation: high quality images from HCP are downsampled to 

create matched pairs of high-res and low-res patches. 
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1.  Baseline 3D Super-resolution Network 
• 3D Extension of ESPCN [3] 
• Minimal architecture (3 conv. + shuffle) 
• Trained to minimise pixel-wise MSE

2. Probabilistic CNNs: model two types of  uncertainty   

Type (I): Intrinsic uncertainty
• inherent ambiguity in the problem 
• irreducible even with infinite data.
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• ambiguity in the “best” model 
• can be explained away by infinite data.
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Solution (I): Heteroscedastic noise model
• model super-resolution mapping as a spatially 

varying multivariate Gaussian dist [4] 

• dual architecture: use two separate 3D-ESPCNs 
to model the mean and the covariance (see Fig. 2). 

• diagonal components in the covariance estimates 
intrinsic uncertainty 

Solution (II): Variational drop-out
• Average over all possible models weighted 

by the posterior over the weights  i.e 

• Approximate posterior with a Gaussian dist. 
using variational drop-out [5] 

• At test time, the “learned” Gaussian noise is 
injected into every convolutional filter (Fig. 3).
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3. Quantifying uncertainty over prediction:  at test time, given an input patch x, apply MC dropout - run multiple forward passes, inject noise according to 
the likelihood and collect many samples of high-res outputs                                    . Then, estimate the mean (predictive mean) and standard deviation 
(predictive uncertainty). Use predictive mean as the final estimate of y and predictive uncertainty to quantify its confidence. 

 Fig.1. 2D illustration of the baseline network with upsampling rate, r = 2. The receptive field of the   
central 2x2 output activations is shown in yellow. 

Fig.2. the dual architecture for estimating intrinsic uncertainty. Diagonal covariance is assumed. The top 
3D-ESPCN estimates the mean and the bottom one estimates the covariance matrix of the likelihood. The 
diagonal entries of the covariance matrix estimates the intrinsic uncertainty.
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Fig.3. combine variational dropout with the heteroscedatisc network to model parameter uncertainty. After 
every convolution, “learned” noise is injected into the feature maps via the “variational dropout layer”.
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3.Visualisation of predictive uncertainty
• predictive mean and uncertainty are estimated from 200 samples of high-res DTIs. 
• high correlation between the uncertainty map and error map (Fig. 5) 
• highlight pathology not represented in the training data (Fig. 6)

 Fig.4. Tractography on Prisma dataset for different methods. From left to right: (i) High-res acquisition, (ii) CNN prediction; (iii) RF; 
(iv) Linear interpolation; (v) Low-res acquisition. 

• (yellow arrows): CNN avoids a false positive tract better than RF and Linear Interp. 
• (green arrows): CNN achieves shaper recovery of WM tracts.

2. Benefits in downstream processing: tractography

Models HCP (rmse) Lifespan (rmse)
Cubic Interpolation 10.069± n/a 32.483± n/a
�-Spline Interpolation 9.578± n/a 33.429± n/a
IQT-Random-Forests 6.974± 0.024 10.038± 0.019
BIQT-Random-Forests 6.972± 0.069 9.926± 0.055
3D-ESPCN(baseline) 6.378± 0.015 8.998± 0.021
Binary-Dropout-CNN(p = 0.1) 6.963± 0.034 9.784± 0.048
Gaussian-Dropout-CNN(p = 0.1) 6.519± 0.015 9.183± 0.024
Variational-Dropout(I)-CNN 6.354± 0.015 8.973± 0.024
Variational-Dropout(II)-CNN 6.356± 0.008 8.982± 0.024
Hetero-Noise-CNN 6.294± 0.029 8.985± 0.051
Hetero-Noise+Variational-Dropout(I) 6.291± 0.012 8.944± 0.044
Hetero-Noise+Variational-Dropout(II) 6.287± 0.029 8.955± 0.029

• Evaluated performance on two datasets. 
• The baseline CNN (3D-ESPCN) outperforms 

the current state-of-the-art model (BIQT-
Random-Forests.). 

• An order of magnitude faster: 1s on a GPU 
and 10s on a CPU. 

• Jointly modelling intrinsic uncertainty (Hetero-
Noise) and parameter uncertainty (Variational-
Dropout) achieves the best performance. 
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