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Abstract

Image quality transfer (IQT) [1] is a machine-learning based framework to enhance low quality
Images (e.g. clinical data) by learning and propagating rich information from rare high quality
Images from expensive scanners (e.g. HCP data).

Background (IQT framework)

e Super-resolution as a patch-wise regression as in [1, 2].

* Training data generation: high quality images from HCP are downsampled to
create matched pairs of high-res and low-res patches.

We propose a Bayesian extension of IQT based on probabilistic deep learning methods.

We demonstrate in super-resolution of dMRI.
Results show:
1. our method improves reconstruction accuracy.
2. our method shows tangible benefits in downstream tractography.

3. our method provides a means to estimate uncertainty over prediction, which can be
used as a surrogate measure of accuracy.
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Fig.1. 2D illustration of the baseline network with upsampling rate, r = 2. The receptive field of the
central 2x2 output activations is shown in yellow.
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. 3. Quantifying uncertainty over prediction: attesttime, given an input patch x, apply MC dropout - run multiple forward passes, inject noise according to »_':
. the likelihood and collect many samples of high-res outputs {y(l), y 2), e, y<T) }. Then, estimate the mean (predictive mean) and standard deviation ‘
.__(predictive uncertainty). Use predictive mean as the final estimate of y and predictive uncertainty to quantify its confidence.

Results 1. x2 DTI super-resolution pest 2nd bost 3.Visualisation of predictive uncertainty
"+ Evaluated performance on two datasets. gﬁ&iﬁmemdaﬁm E)%};g(imif; b 1(17;186) . predictive mean and uncertainty are estimated from 200 samples of high-res DTls.
- The baseline CNN (3D-ESPCN) outperforms  j-Spline Interpolation 9.578+ n/a  33.429+ n/a - high correlation between the uncertainty map and error map (Fig. 5)
_Af _ _ IQT-Random-Forests 6.974 £0.024  10.038 +0.019 . hi - ' ot '
the current state-of-the-art model (BIQT T R ot oo § 09 £ 0060 0.096 & 0,055 highlight pathology not represented in the training data (Fig. 6)
Random-Forests.). 3D-ESPCN (baseline) 6.378 £0.015  8.998 + 0.021
- An order of magnitude faster: 1s on a GPU Binary—Dropout—CNN(p<: 0.1) ) 6.963 £ 0.034  9.784 + 0.048
Gaussian-Dropout-CNN(p = 0.1 6.519 £ 0.015 9.183 £ 0.024 P~ :
an_d 10s on a CPU . _ Variational—Dfopout(I)—C]?\TN 6.354 +£0.015  8.973 +0.024 HR Prediction RMSE Uncertalnty
* Jointly modelling intrinsic uncertainty (Hetero-  vasiational Dropout(IT)-CNN 6.356 + 0.008  8.982 + 0.024
Noise) and parameter uncertainty (Variational- Eetero—goise—Cxlf\TN - 0 %229941 ﬂ::t %%2192 8.985 ii 0.051
. etero-Noise+ Variational-Dropout : : 8.944 + 0.044
Dropout) achieves the best performance. Hetero—Noise+Variational—DroEout(II) 6.287 +0.029  8.955 + 0.029
2. Benefits In downstream processing: tractography

- (yellow arrows): CNN avoids a false positive tract better than RF and Linear Interp.
- (green arrows): CNN achieves shaper recovery of WM tracts.
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Fig.5 Comparison between RMSE and uncertainty maps for FA and MD computed on a HCP subject.
LR input, ground truth and HR prediction are also shown.
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Fig.6 DTI SR on a brain tumour patient. From top to bottom: (i) MD computed from the original DTI,
(ii) the estimated HR version; (iii) uncertainty.

Fig.4. Tractography on Prisma dataset for different methods. From left to right: (i) High-res acquisition, (ii) CNN prediction; (iii) RF;
(iv) Linear interpolation; (v) Low-res acquisition.
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