
Background (IQT framework)

• Node-wise Bayesian regression forest: the Bayesian linear model is used 
to model the predictive distribution at each leaf node of each tree: 

• Uncertainty quantification by the variance at the assigned leaf node: 

Our solution (Bayesian IQT)

• Training data generation (Fig.2): high quality images from HCP are 
downsampled to create matched pairs of high-res and low-res patches. 

Abstract
• Image quality transfer (IQT) [1]  is a machine-learning based 

framework to enhance low quality images (e.g. clinical data) by 
learning and propagating rich information from rare high quality 
images from expensive scanners (e.g. HCP data).  

• We propose a Bayesian extension of IQT and demonstrate in 
super-resolution of dMRI. 

• Results show: 
1. our method improves reconstruction accuracy. 
2. our method provides a robust uncertainty estimate. 
3. the uncertainty measure can highlight unfamiliar regions 

not observed in training data e.g. pathology.
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Conclusions
Our method, Bayesian IQT: 
• provides an uncertainty measure which highly correlates 
with the reconstruction accuracy, and is able to highlight 
pathologies not observed in the training data. 
• improves reconstruction accuracy in super-resolution 
against the original IQT implementation and standard 
interpolation methods. 
• retains generality of IQT; it can be applied to other 
modalities (e.g. structural MRI, CT) and different applications 
beyond super-resolution (e.g. image synthesis). 

References 
1. Alexander, D.C., et al.: Image quality transfer via random forest regression. In: MICCAI 2014.  

2. Criminisi, A., Shotton, J.: Decision forests for computer vision and medical image analysis. Springer (2013)  

�2
Pred(x

⇤) = x

⇤T
A(D)x⇤ + ��1

Unfamiliarity Noise
distance from the 
training data

variability in the 
training data

Fig.3  Reconstruction errors and uncertainty as colour maps. 
The smaller, the `better’ (the more accurate and more confident)

Fig.4 Uncertainty maps on super-resolved images of a Multiple Sclerosis patient. Top row 
shows the lesion labels from experts overlaid on T2.

• Super-resolution as a patch-wise regression (Fig.1) as in [1]. 

Fig.6 Reconstruction accuracy of various super-resolution methods 
on three reconstruction metrics; RMSE (left), PSNR (middle) and 
MSSIM (right).  Artificially downsampled low-res images are super-
resolved to recover the original resolution.  

0 1 2 3 4

Size of training data ×105

7

7.5

8

8.5

9

9.5

10

10.5

D
T

 R
M

S
E

 (
m

m
2
s-1

)

×10-5

Tricubic interpolation
β - spline interpolation
Linear regression  (LR)
Bayesian regression (BLR)
IQT
BIQT

0 1 2 3 4

Size of training data ×105

45

45.5

46

46.5

47

47.5

48

48.5

P
S

N
R

 (
d
B

)

0 1 2 3 4

Size of training data ×105

0.958

0.96

0.962

0.964

0.966

0.968

0.97

0.972

0.974

0.976

M
S

S
IM

BIQT IQT BLR LR SplineCubic
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

D
T

 R
M

S
E

 (
m

m
2
s

-1
)

×10-3

Control
MS

Fig.7 The average 
reconstruction errors 
for MS and control 

Fig.5 Uncertainty maps on images of a brain tumour 
patient (contours highlighted).
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• Clinical data: unknown ground truth, 
but one can look at the uncertainty map 
to judge the accuracy.  

• Super-resolved pathological brains 
(MS + tumour) with random forests 
trained on healthy brains. 

• Uncertainty correlates with pathology.
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• Synthetic data: known ground truth. 
• Uncertainty gives a surrogate measure of accuracy.

Results
• Uncertainty displays correspondence with reconstruction accuracy. 

• Uncertainty highlights pathologies not present in training set by 
assigning higher uncertainty 

• Outperforms in accuracy the original IQT and standard interpolation 
techniques on three metrics in both healthy and pathological brains.  


