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Abstract
Deep neural networks and decision trees oper-
ate on largely separate paradigms; typically, the
former performs representation learning with pre-
specified architectures, while the latter is charac-
terised by learning hierarchies over pre-specified
features with data-driven architectures. We unite
the two via adaptive neural trees (ANTs) that
incorporates representation learning into edges,
routing functions and leaf nodes of a decision
tree, along with a backpropagation-based training
algorithm that adaptively grows the architecture
from primitive modules (e.g., convolutional lay-
ers). We demonstrate that, whilst achieving com-
petitive performance on classification and regres-
sion datasets, ANTs benefit from (i) lightweight
inference via conditional computation, (ii) hier-
archical separation of features useful to the task
e.g. learning meaningful class associations, such
as separating natural vs. man-made objects, and
(iii) a mechanism to adapt the architecture to the
size and complexity of the training dataset.

1. Introduction
Neural networks (NNs) and decision trees (DTs) are both
powerful classes of machine learning models with proven
successes in academic and commercial applications. The
two approaches, however, typically come with mutually
exclusive benefits and limitations.

NNs are characterised by learning hierarchical representa-
tions of data through the composition of nonlinear trans-
formations (Zeiler & Fergus, 2014; Bengio, 2013), which
has alleviated the need for feature engineering, in contrast
with many other machine learning models. In addition, NNs
are trained with stochastic optimisers, such as stochastic
gradient descent (SGD), allowing training to scale to large
datasets. Consequently, with modern hardware, we can train
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NNs of many layers on large datasets, solving numerous
problems ranging from object detection to speech recog-
nition with unprecedented accuracy (LeCun et al., 2015).
However, their architectures typically need to be designed
by hand and fixed per task or dataset, requiring domain
expertise (Zoph & Le, 2017). Inference can also be heavy-
weight for large models, as each sample engages every part
of the network, i.e., increasing capacity causes a propor-
tional increase in computation (Bengio et al., 2013).

Alternatively, DTs are characterised by learning hierarchical
clusters of data (Criminisi & Shotton, 2013). A DT learns
how to split the input space, so that in each subset, linear
models suffice to explain the data. In contrast to standard
NNs, the architectures of DTs are optimised based on train-
ing data, and are particularly advantageous in data-scarce
scenarios. DTs also enjoy lightweight inference as only a
single root-to-leaf path on the tree is used for each input
sample. However, successful applications of DTs often re-
quire hand-engineered features of data. We can ascribe the
limited expressivity of single DTs to the common use of sim-
plistic routing functions, such as splitting on axis-aligned
features. The loss function for optimising hard partition-
ing is non-differentiable, which hinders the use of gradient
descent-based optimization and thus complex splitting func-
tions. Current techniques for increasing capacity include
ensemble methods such as random forests (RFs) (Breiman,
2001) and gradient-boosted trees (GBTs) (Friedman, 2001),
which are known to achieve state-of-the-art performance in
various tasks, including medical applications and financial
forecasting (Sandulescu & Chiru, 2016; Kaggle.com, 2017;
Le Folgoc et al., 2016; Volkovs et al., 2017).

The goal of this work is to combine NNs and DTs to gain
the complementary benefits of both approaches. To this
end, we propose adaptive neural trees (ANTs), which gen-
eralise previous work that attempted the same unification
(Suárez & Lutsko, 1999; İrsoy et al., 2012; Laptev & Buh-
mann, 2014; Rota Bulo & Kontschieder, 2014; Kontschieder
et al., 2015; Frosst & Hinton, 2017; Xiao, 2017) and address
their limitations (see Tab. 1). ANTs represent routing deci-
sions and root-to-leaf computational paths within the tree
structures as NNs, which lets them benefit from hierarchi-
cal representation learning, rather than being restricted to
partitioning the raw data space. On the other hand, unlike
the fully distributed representaion of standard NN models,
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the tree topology of ANTs acts as a strong structural prior
that enforces sparse structures by which features are shared
and separated in a hierarchical fashion. In addition, we pro-
pose a backpropagation-based training algorithm to grow
ANTs based on a series of decisions between making the
ANT deeper—the central NN paradigm—or partitioning the
data—the central DT paradigm (see Fig. 1 (Right)). This
allows the architectures of ANTs to adapt to the data avail-
able. By our design, ANTs inherit the following desirable
properties from both DTs and NNs:

• Representation learning: as each root-to-leaf path in
an ANT is an NN, features can be learned end-to-end
with gradient-based optimisation. Combined with the
tree structure, an ANT can learn such features which
are hierarchically shared and separated.

• Architecture learning: by progressively growing
ANTs, the architecture adapts to the availability and
complexity of data, embodying Occams razor. The
growth procedure can be viewed as architecture search
with a hard constraint over the model class.

• Lightweight inference: at inference time, ANTs per-
form conditional computation, selecting a single root-
to-leaf path on the tree on a per-sample basis, activating
only a subset of the parameters of the model.

We empirically validate these benefits for regression and
classification through experiments on the SARCOS (Vi-
jayakumar & Schaal, 2000), MNIST (LeCun et al., 1998)
and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets. The
best performing methods on the SARCOS multivariate re-
gression dataset are all tree-based, with ANTs achieving
the lowest mean squared error. On the other hand, along
with other forms of neural networks, ANTs far outperform
state-of-the-art RF (Zhou & Feng, 2017) and GBT (Pono-
mareva et al., 2017) methods on image classification, with
architectures achieving over 99% accuracy on MNIST and
over 90% accuracy on CIFAR-10. Our ablations on all three
datasets consistently show that the combination of feature
learning and data partitioning are required for the best pre-
dictive performance of ANTs. In addition, we show that
ANTs can learn meaningful hierarchical partitionings of
data, e.g., grouping man-made and natural objects (see Fig.
2) useful to the end task. ANTs also have reduced time and
memory requirements during inference, thanks to such hier-
archical structure. In one case, we discover an architecture
that achieves over 98% accuracy on MNIST using approxi-
mately the same number of parameters as a linear classifier
on raw image pixels, showing the benefits of tree-shaped
hierarchical sharing and separation of features in enhancing
both computational and predictive performance. Finally, we
demonstrate the benefits of architecture learning by train-
ing ANTs on subsets of CIFAR-10 of varying sizes. The
method can construct architectures of adequate size, leading
to better generalisation, particularly on small datasets.

2. Related work
Our work is primarily related to research into combining
DTs and NNs. Here we explain how ANTs subsume a
large body of such prior work as specific cases and address
their limitations. We include additional reviews of work in
conditional computation and neural architecture search in
Sec.B in the supplementary material.

The very first soft decition tree (SDT) introduced by Suárez
& Lutsko (1999) is a specific case where in our terminology
the routers are axis-aligned features, the transformers are
identity functions, and the routers are static distributions
over classes or linear functions. The hierarchical mixture
of experts (HMEs) proposed by Jordan & Jacobs (1994) is
a variant of SDTs whose routers are linear classifiers and
the tree structure is fixed; Léon & Denoyer (2015) recently
proposed a more computationally efficient training method
that is able to directly optimise hard-partitioning by differen-
tiating through stochastic gradient estimators. More modern
SDTs (Rota Bulo & Kontschieder, 2014; Laptev & Buh-
mann, 2014; Frosst & Hinton, 2017) have used multilayer
perceptrons (MLPs) or convolutional layers in the routers to
learn more complex partitionings of the input space. How-
ever, the simplicity of identity transformers used in these
methods means that input data is never transformed and
thus each path on the tree does not perform representation
learning, limiting their performance.

More recent work suggested that integrating non-linear
transformations of data into DTs would enhance model per-
formance. The neural decision forest (NDF) (Kontschieder
et al., 2015), which held cutting-edge performance on Ima-
geNet (Deng et al., 2009) in 2015, is an ensemble of DTs,
each of which is also an instance of ANTs where the whole
GoogLeNet architecture (Szegedy et al., 2015) (except for
the last linear layer) is used as the root transformer, prior to
learning tree-structured classifiers with linear routers. Xiao
(2017) employed a similar approach with a MLP at the root
transformer, and is optimised to minimise a differentiable
information gain loss. The conditional network proposed
by Ioannou et al. (2016) sparsified CNN architectures by
distributing computations on hierarchical structures based
on directed acyclic graphs with MLP-based routers, and
designed models with the same accuracy with reduced com-
pute cost and number of parameters. However, in all cases,
the model architectures are pre-specified and fixed.

In contrast, ANTs satisfy all criteria in Tab. 1; they provide a
general framework for learning tree-structured models with
the capacity of representation learning along each path and
within routing functions, and a mechanism for learning its
architecture.

Architecture growth is a key facet of DTs (Criminisi &
Shotton, 2013), and typically performed in a greedy fashion
with a termination criteria based on validation set error
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Table 1: Comparison of tree-structured NNs. The first column
denotes if each path on the tree is a NN, and the second column
denotes if the routers learn features. The last column shows if the
method grows an architecture, or uses a pre-specified one.

Method Feature learning? Grown?
Path Routers

SDT (Suárez & Lutsko, 1999) 7 7 3
SDT 2 / HME (Jordan & Jacobs, 1994) 7 3 7
SDT 3 (İrsoy et al., 2012) 7 3 3
SDT 4 (Frosst & Hinton, 2017) 7 3 7
RDT (Léon & Denoyer, 2015) 7 3 7
BT (İrsoy et al., 2014) 7 3 3
Conv DT (Laptev & Buhmann, 2014) 7 3 7
NDT (Rota Bulo & Kontschieder, 2014) 7 3 3
NDT 2 (Xiao, 2017) 3 3 7
NDF (Kontschieder et al., 2015) 3 3 7
CNet (Ioannou et al., 2016) 3 3 7
ANT (ours) 3 3 3

(Suárez & Lutsko, 1999; İrsoy et al., 2012). Previous works
in DT research have made attempts to improve upon this
greedy growth strategy. Decision jungles (Shotton et al.,
2013) employ a training mechanism to merge partitioned
input spaces between different sub-trees, and thus to rectify
suboptimal “splits” made due to the locality of optimisation.
İrsoy et al. (2014) proposes budding trees, which are grown
and pruned incrementally based on global optimisation of
existing nodes. While our training algorithm, for simplicity,
grows the architecture by greedily choosing the best option
between going deeper and splitting the input space (see Fig.
1), it is certainly amenable to these advances.

3. Adaptive Neural Trees
We now formalise the definition of Adaptive Neural
Trees (ANTs), which are a form of DTs enhanced
with deep, learned representations. We focus on super-
vised learning, where the aim is to learn the conditional
distribution p(y|x) from a set of N labelled samples
(x(1),y(1)), ..., (x(N),y(N)) ∈ X × Y as training data.

Figure 1: (Left). An example ANT. Data is passed through
transformers (black circles on edges), routers (white circles on
internal nodes), and solvers (gray circles on leaf nodes). The
red shaded path shows routing of x to reach leaf node 4. Input
x undergoes a series of selected transformations x → xψ0 :=

tψ0 (x) → xψ1 := tψ1 (x
ψ
0 ) → xψ4 := tψ4 (x

ψ
1 ) and the solver

module yields the predictive distribution pφ,ψ4 (y) := sφ4 (x
ψ
4 ).

The probability of selecting this path is given by πψ,θ
2 (x) :=

rθ0 (x
ψ
0 ) · (1− rθ1 (x

ψ
1 )). (Right). Three growth options at a given

node: split data, deepen transform & keep. The small white circles
on the edges denote identity transformers.

3.1. Model Topology and Operations
In short, an ANT is a tree-structured model, characterized
by a set of hierarchical partitions of the input space X , a

series of nonlinear transformations, and separate predictive
models in the respective component regions. More formally,
we define an ANT as a pair (T,O) where T defines the
model topology, and O denotes the set of operations on it.

We restrict the model topology T to be instances of binary
trees, defined as a set of graphs whose each node is either
an internal node or a leaf, and is the child of exactly one
parent node, except the root node at the top. We define the
topology of a tree as T := {N , E} where N is the set of all
nodes, and E is the set of edges between them. Nodes with
no children are leaf nodes, Nleaf , and all others are internal
nodes, Nint. Every internal node j ∈ Nint has exactly two
children nodes, represented by left(j) and right(j). Unlike
standard trees, E contains an edge which connects input data
x with the root node, as shown in Fig.1 (Left).

Every node and edge is assigned with operations which acts
on the allocated samples of data (Fig.1). Starting at the root,
each sample gets transformed and traverses the tree accord-
ing to the set of operations O. An ANT is constructed based
on three primitive modules of differentiable operations:

1. Routers, R: each internal node j ∈ Nint holds a
router module, rθj : Xj → [0, 1] ∈ R, parametrised
by θ, which sends samples from the incoming edge
to either the left or right child. Here Xj denotes the
representation at node j. We use stochastic routing,
where the decision (1 for the left and 0 for the right
branch) is sampled from Bernoulli distribution with
mean rθj (xj) for input xj ∈ Xj . As an example, rθj
can be defined as a small CNN.

2. Transformers, T : every edge e ∈ E of the tree has
one or a composition of multiple transformer mod-
ule(s). Each transformer tψe ∈ T is a nonlinear func-
tion, parametrised by ψ, that transforms samples from
the previous module and passes them to the next one.
For example, tψe can be a single convolutional layer
followed by ReLU (Nair & Hinton, 2010). Unlike in
standard DTs, edges transform data and are allowed to
“grow” by adding more operations (Sec. 4), learning
“deeper” representations as needed.

3. Solvers, S: each leaf node l ∈ Nleaf is assigned to
a solver module, sφl : Xl → Y ∈ S, parametrised
by φ, which operates on the transformed input data
and outputs an estimate for the conditional distribution
p(y|x). For classification tasks, we can define, for
example, sφ as a linear classifier on the feature space
Xl, which outputs a distribution over classes.

Defining operations on the graph T amounts to a specifi-
cation of the triplet O = (R, T ,S). For example, given
image inputs, we would choose the operations of each mod-
ule to be from the set of operations commonly used in CNNs
(examples are given in Tab. 2). In this case, every compu-
tational path on the resultant ANT, as well as the set of
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Table 2: Primitive module specifications for MNIST, CIFAR-10 and SARCOS datasets. “conv5-40” denotes a 2D convolution with 40
kernels of spatial size 5× 5. “GAP”, “FC”, “LC” and “LR” stand for global-average-pooling, fully connected layer, linear classifier and
linear regressor. “Downsample Freq” denotes the frequency at which 2× 2 max-pooling is applied.

Model Router,R Transformer, T Solver, S Downsample Freq.
ANT-SARCOS 1× FC +Sigmoid 1×FC+ tanh LR 0
ANT-MNIST-A 1× conv5-40 + GAP + 2×FC +Sigmoid 1× conv5-40 + ReLU LC 1
ANT-MNIST-B 1× conv3-40 + GAP + 2×FC +Sigmoid 1× conv3-40 +ReLU LC 2
ANT-MNIST-C 1× conv5-5 + GAP + 2×FC +Sigmoid 1× conv5-5+ReLU LC 2
ANT-CIFAR10-A 2× conv3-128 + GAP + 1×FC +Sigmoid 2× conv3-128 +ReLU LC 1
ANT-CIFAR10-B 2× conv3-96 + GAP + 1×FC +Sigmoid 2× conv3-96 +ReLU LC 1
ANT-CIFAR10-C 2× conv3-72 + GAP + 1×FC +Sigmoid 2× conv3-72 +ReLU GAP + LC 1

routers that guide inputs to one of these paths, are given
by CNNs. Lastly, many existing tree-structured models
(Suárez & Lutsko, 1999; İrsoy et al., 2012; Laptev & Buh-
mann, 2014; Rota Bulo & Kontschieder, 2014; Kontschieder
et al., 2015; Frosst & Hinton, 2017; Xiao, 2017) are instanti-
ations of ANTs with limitations which we will address with
our model (see Sec. 2 for a more detailed discussion).

3.2. Probabilistic model and inference
An ANT models the conditional distribution p(y|x) as a
hierarchical mixture of experts (HMEs) (Jordan & Jacobs,
1994), each of which is defined as an NN and is a root-to-leaf
path in the tree. Standard HMEs are a special case of ANTs
where transformers are the identity function. As a result,
the representations within experts are hierarchically shared
between similar experts, unlike the independent representa-
tions within experts in standard HMEs. In addition, ANTs
come with a growth mechanism to determine the number of
needed experts and their complexity, as discussed in Sec. 4.

Each input x to the ANT stochastically traverses the tree
based on decisions of routers and undergoes a sequence
of transformations until it reaches a leaf node where the
corresponding solver predicts the label y. Suppose we have
L leaf nodes, the full predictive distribution, with parameters
Θ = (θ,ψ,φ), is given by

p(y|x,Θ) =

L∑
l=1

p(zl = 1|x,θ,ψ)︸ ︷︷ ︸
Leaf-assignment prob. πθ,ψl

p(y|x, zl = 1,φ,ψ)︸ ︷︷ ︸
Leaf-specific prediction. pφ,ψ

l

(1)
where z ∈ {0, 1}L is an L-dimensional binary latent vari-
able such that

∑L
l=1 zl = 1, which describes the choice

of leaf node (e.g. zl = 1 means that leaf l is used). Here
θ,ψ,φ summarise the parameters of router, transformer
and solver modules in the tree. The mixing coefficient
πθ,ψl (x) := p(zl = 1|x,ψ,θ) quantifies the probability
that x is assigned to leaf l and is given by a product of
decision probabilities over all router modules on the unique
path Pl from the root to leaf node l:

πψ,θl (x) =
∏
rθj ∈Pl

rθj (xψj ) 1[l↙j] ·
(
1− rθj (xψj )

) 1−1[l↙j]
where l↙ j is a binary relation and is only true if leaf l is
in the left subtree of internal node j, and xψj is the feature
representation of x at node j. Let Tj = {tψe1 , ..., t

ψ
en} denote

the ordered set of the n transformer modules on the path
from the root to node j, the feature vector xψj is given by

xψj :=
(
tψen ◦ ... ◦ t

ψ
e2 ◦ t

ψ
e1

)
(x).

On the other hand, the leaf-specific conditional distribution
pφ,ψl (y) := p(y|x, zl = 1,φ,ψ) in (1) yields an estimate
for the distribution over target y for leaf node l and is given
by its solver’s output sφl (xψparent(l)).

We consider two inference schemes based on a trade-off
between accuracy and computation, which we refer to as
multi-path and single-path inference. The multi-path infer-
ence uses the full predictive distribution given in eq. (1).
However, computing this quantity requires averaging the
distributions over all the leaves involving computing all
operations at all nodes and edges of the tree, which is ex-
pensive for a large ANT. On the other hand, the single-path
inference scheme only uses the predictive distribution at
the leaf node chosen by greedily traversing the tree in the
directions of highest confidence of the routers. This approx-
imation constrains computations to a single path, allowing
for more memory- and time-efficient inference.

4. Optimisation
Training of an ANT proceeds in two stages: 1) growth phase
during which the model architecture is learned based on lo-
cal optimisation, and 2) refinement phase which further
tunes the parameters of the model discovered in the first
phase based on global optimisation. We include a pseu-
docode of the training algorithm in Supp. Sec. A.

4.1. Loss function: optimising parameters of O
For both phases, we use the negative log-likelihood (NLL)
as the common objective function to minimise:

−log p(Y|X,Θ) = −
N∑
n=1

log (

L∑
l=1

πθ,ψl (x(n)) pφ,ψl (y(n)))

where X = {x(1), ...,x(N)}, Y = {y(1), ...,y(N)} de-
note the training inputs and targets. As all component
modules (routers, transformers and solvers) are differen-
tiable with respect to their parameters Θ = (θ,ψ,φ), we
can use gradient-based optimisation. Given an ANT with
fixed topology T, we use backpropagation (Rumelhart et al.,
1986) for gradient computation and use gradient descent to
minimise the NLL for learning the parameters.
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4.2. Growth phase: learning architecture T
We next describe our proposed method for growing the
tree T to an architecture of adequate complexity for the
given training data. Starting from the root, we choose one
of the leaf nodes in breadth-first order and incrementally
modify the architecture by adding computational modules
to it. In particular, we evaluate 3 choices (Fig. 1 (Right))
at each leaf node; (1)“split data” extends the current model
by splitting the node with an addition of a new router; (2)
“deepen transform” increases the depth of the incoming
edge by adding a new transformer; (3) “keep” retains the
current model. We then locally optimise the parameters of
the newly added modules in the architectures of (1) and
(2) by minimising NLL via gradient descent, while fixing
the parameters of the previous part of the computational
graph. Lastly, we select the model with the lowest validation
NLL if it improves on the previously observed lowest NLL,
otherwise we execute (3). This process is repeated to all new
nodes level-by-level until no more “split data” or “deepen
transform” operations pass the validation test.

The rationale for evaluating the two choices is to give the
model a freedom to choose the most effective option be-
tween “going deeper” or splitting the data space. Splitting a
node is equivalent to a soft partitioning of the feature space
of incoming data, and gives birth to two new leaf nodes (left
and right children solvers). In this case, the added trans-
former modules on the two branches are identity functions.
Deepening an edge on the other hand seeks to learn richer
representation via an extra nonlinear transformation, and
replaces the old solver with a new one. Local optimisation
is efficient in time and space; gradients only need to be com-
puted for the parameters of the new parts of the architecture,
reducing computation, while forward activations prior to the
new parts do not need to be stored in memory, saving space.

4.3. Refinement phase: global tuning of O
Once the model topology is determined in the growth phase,
we finish by performing global optimisation to refine the
parameters of the model, now with a fixed architecture.
This time, we perform gradient descent on the NLL with
respect to the parameters of all modules in the graph, jointly
optimising the hierarchical grouping of data to paths on
the tree and the associated expert NNs. The refinement
phase can correct suboptimal decisions made during the
local optimisation of the growth phase, and empirically
improves the generalisation error (see Sec. 5.3).

5. Experiments
We evaluate ANTs using the SARCOS multivariate regres-
sion dataset (Vijayakumar & Schaal, 2000), and the MNIST
(LeCun et al., 1998) and CIFAR-10 (Krizhevsky & Hinton,
2009) classification datasets. We run ablation studies to
show that our different components are vital for the best
performance. We then assess the ability of ANTs to automat-

ically learn meaningful hierarchical structures in data. Next,
we examine the effects of refinement phase on ANTs, and
show that it can automatically prune the tree. Finally, we
demonstrate that our proposed training procedure adapts the
model size appropriately under varying amounts of labelled
data. All of our models are implemented in PyTorch (Paszke
et al., 2017)1. Full training details, including training times
on a single GPU, are provided in Supp. Sec. C and D.

5.1. Model performance
We compare the performance of ANTs (Tab. 2) against a
range of DT and NN models (Tab. 3), where notably the
relative performance of these two classes of models differs
between datasets. ANTs inherit from both and achieve
the lowest error on SARCOS, and perform favourably on
MNIST and CIFAR-10. In general, DT methods without
feature learning, such as RFs (Breiman, 2001; Zhou & Feng,
2017) and GBTs (Ponomareva et al., 2017), perform poorly
on image classification tasks (Krizhevsky & Hinton, 2009).
In comparison with CNNs without shortcut connections
(LeCun et al., 1998; Goodfellow et al., 2013; Lin et al.,
2014; Springenberg et al., 2015), different ANTs balance
between stronger performance with comparable numbers
of trainable parameters, and comparable performance with
smaller amount of parameters. At the other end of the
spectrum, state-of-the-art NNs (Sabour et al., 2017; Huang
et al., 2017) contain significantly more parameters.

Conditional computation: Tab.3 compares the errors and
number of parameters of different ANTs for both multi-
path and single-path inference schemes. While reducing the
number of parameters (from Params (multi-path) to Params
(single-path)) across all ANT models, we observe only a
small difference in error (between Error (multi-path) and
Error (single-path)), with the largest deviations being 0.06%
for classification and 0.158 for regression. In addition, Supp.
Sec. H shows that the single-path inference reduces FLOPS.
This means that single-path inference gives an accurate
approximation of the multi-path inference, while being more
efficient to compute. This close approximation comes from
the confident splitting probabilities of routers, being close
to 0 or 1 (see blue histograms in Fig. 2(b)).

Ablation study: we compare the predictive errors of differ-
ent variants of ANTs in cases where the options for adding
transformer or router modules are disabled (see Tab. 4). In
the first case, the resulting models are equivalent to SDTs
(Suárez & Lutsko, 1999) or HMEs (Jordan & Jacobs, 1994)
with locally grown architectures, while the second case is
equivalent to standard CNNs, grown adaptively layer by
layer. We observe that either ablation consistently leads to
higher errors across different module configurations on all
three datasets, justifying the combination of feature learning
and hierarchical partitioning in ANTs.

1Codes: https://github.com/rtanno21609/
AdaptiveNeuralTrees

https://github.com/rtanno21609/AdaptiveNeuralTrees
https://github.com/rtanno21609/AdaptiveNeuralTrees
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Table 3: Comparison of performance of different models on SARCOS, MNIST and CIFAR-10. The columns “Error (multi-path)” and
“Error (single-path)” indicate the classification (%) or regression (MSE) errors of predictions based on the multi-path and the single-path
inference. The columns “Params. (multi-path)” and “Params. (single-path)” respectively show the total number of parameters in the
model and the average number of parameters used during single-path inference. “Ensemble Size” indicates the size of ensemble used. An
entry of “–” indicates that no value was reported. Methods marked with † are from our implementations trained in the same experimental
setup. * indicates that the parameters are initialised with a pre-trained CNN.

Method
Error

(multi-path)
Error

(single-path)
Params.

(multi-path)
Params.

(single-path)
Ensemble

Size

SA
R

C
O

S

Linear regression 10.693 N/A 154 N/A 1
MLP with 2 hidden layers (Zhao et al., 2017) 5.111 N/A 31,804 N/A 1
Decision tree 3.708 3.708 319,591 25 1
MLP with 1 hidden layer 2.835 N/A 7,431 N/A 1
Gradient boosted trees 2.661 2.661 391,324 2,083 7× 30
MLP with 5 hidden layers 2.657 N/A 270,599 N/A 1
Random forest 2.426 2.426 40,436,840 4,791 200
Random forest 2.394 2.394 141,540,436 16,771 700
MLP with 3 hidden layers 2.129 N/A 139,015 N/A 1
SDT (with MLP routers) 2.118 2.246 28,045 10,167 1
Gradient boosted trees 1.444 1.444 988,256 6,808 7× 100
ANT-SARCOS 1.384 1.542 103,823 61,640 1
ANT-SARCOS (ensemble) 1.226 1.372 598,280 360,766 8

M
N

IS
T

Linear classifier 7.91 N/A 7,840 N/A 1
RDT (Léon & Denoyer, 2015) 5.41 – – – 1
Random Forests (Breiman, 2001) 3.21 3.21 – – 200
Compact Multi-Class Boosted Trees (Ponomareva et al., 2017) 2.88 – – – 100
Alternating Decision Forest (Schulter et al., 2013) 2.71 2.71 – – 20
Neural Decision Tree (Xiao, 2017) 2.10 – 1,773,130 502,170 1
ANT-MNIST-C 1.62 1.68 39,670 7,956 1
MLP with 2 hidden layers (Simard et al., 2003) 1.40 N/A 1,275,200 N/A 1
LeNet-5† (LeCun et al., 1998) 0.82 N/A 431,000 N/A 1
gcForest (Zhou & Feng, 2017) 0.74 0.74 – – 500
ANT-MNIST-B 0.72 0.73 76,703 50,653 1
Neural Decision Forest (Kontschieder et al., 2015) 0.70 – 544,600 463,180 10
ANT-MNIST-A 0.64 0.69 100,596 84,935 1
ANT-MNIST-A (ensemble) 0.29 0.30 850,775 655,449 8
CapsNet (Sabour et al., 2017) 0.25 – 8.2M N/A 1

C
IF

A
R

-1
0

Compact Multi-Class Boosted Trees (Ponomareva et al., 2017) 52.31 – – – 100
Random Forests (Breiman, 2001) 50.17 50.17 – – 2000
gcForest (Zhou & Feng, 2017) 38.22 38.22 – – 500
MaxOut (Goodfellow et al., 2013) 9.38 N/A 6M N/A 1
ANT-CIFAR10-C 9.31 9.34 0.7M 0.5M 1
ANT-CIFAR10-B 9.15 9.18 0.9M 0.6M 1
Network in Network (Lin et al., 2014) 8.81 N/A 1M N/A 1
All-CNN†(Springenberg et al., 2015) 8.71 N/A 1.4M N/A 1
ANT-CIFAR10-A 8.31 8.32 1.4M 1.0M 1
ANT-CIFAR10-A (ensemble) 7.71 7.79 8.7M 7.4M 8
ANT-CIFAR10-A* 6.72 6.74 1.3M 0.8M 1
ResNet-110 (He et al., 2016) 6.43 N/A 1.7M N/A 1
DenseNet-BC (k=24) (Huang et al., 2017) 3.74 N/A 27.2M N/A 1

SARCOS multivariate regression: Tab. 3 shows that
ANT-SARCOS outperforms all other methods in mean
squared error (MSE) with the full set of parameters. With
the single-path inference, GBTs performs slightly better
than a single ANT while requiring fewer parameters. We
note that the top 3 methods are all tree-based, with the third
best method being an SDT (with MLP routers). On the
other hand, ANT and GBTs outperform the best standard
NN model with less than a half of the parameter count. This
highlights the value of hierarchical clustering for predictive
performance and inference speed. Meanwhile, we still reap
the benefits of representation learning, as shown by both
ANT-SARCOS and the SDT (which is a specific form of
ANT with identity transformers) requiring fewer parameters
than the best-performing GBT configuration. Finally, we
note that deeper NNs (5 vs. 3 hidden layers) can overfit on
this small dataset, which makes the adaptive growth proce-
dure of tree-based methods ideal for finding a model that
exhibits good generalisation.

MNIST digit classification: we observe that ANT-MNIST-
A outperforms state-of-the-art GBT (Ponomareva et al.,
2017) and RF (Zhou & Feng, 2017) methods in accuracy.
This performance is attained despite the use of a single tree,
while RF methods operate with ensembles of classifiers (the
size shown in Tab. 2). In particular, the NDF (Kontschieder
et al., 2015) has a pre-specified architecture where LeNet-5
(LeCun et al., 1998) is used as the root transformer module,
and 10 trees of fixed depth 5 are built on this base fea-
tures. On the other hand, ANT-MNIST-A is constructed in
a data-driven manner from primitive modules, and displays
an improvement over the NDF both in terms of accuracy
and number of parameters. In addition, reducing the size
of convolution kernels (ANT-MNIST-B) reduces the total
number of parameters by 25% and the path-wise average by
almost 40% while only increasing the error by < 0.1%.

We also compare against the LeNet-5 CNN (LeCun et al.,
1998), comprised of the same types of operations used in
our primitive modules (i.e. convolutional, max-pooling and
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Table 4: Ablation study on regression (MSE) and classification
(%) errors. “CNN” refers to the case where the ANT is grown with-
out routers while “SDT/HME” refers to the case where transformer
modules on the edges are disabled.

Model Error (multi-path) Error (single-path)
ANT CNN HME ANT CNN HME

(default) (noR) (no T ) (default) (noR) (no T )
SARCOS 1.38 2.51 2.12 1.54 2.51 2.25
MNIST-A 0.64 0.74 3.18 0.69 0.74 4.19
MNIST-B 0.72 0.80 4.63 0.73 0.80 3.62
MNIST-C 1.62 3.71 5.70 1.68 3.71 6.96
CIFAR10-A 8.31 9.29 39.29 8.32 9.29 40.33
CIFAR10-B 9.15 11.08 43.09 9.18 11.08 44.25
CIFAR10-C 9.31 11.61 48.59 9.34 11.61 50.02

FC layers). For a fair comparison, the network is trained
with the same protocol as that of the ANT refinement phase,
achieving an error rate of 0.82%. Both ANT-MNIST-A
and ANT-MNIST-B attain better accuracy with a smaller
number of parameters than LeNet-5. The current state-of-
the-art, capsule networks (CapsNets) (Sabour et al., 2017),
have more parameters than ANT-MNIST-A by almost two
orders of magnitude.2 By ensembling ANTs, we can reach
similar performance (0.29% versus 0.25%) with an order of
magnitude less parameters (see Supp. Sec. I).

Lastly, we highlight the observation that ANT-MNIST-C,
with the simplest primitive modules, achieves an error rate
of 1.68% with single-path inference, which is significantly
better than that of the linear classifier (7.91%), while en-
gaging almost the same number of parameters (7, 956 vs.
7, 840) on average. To isolate the benefit of convolutions,
we took one of the root-to-path CNNs on ANT-MNIST-C
and increased the number of kernels to adjust the number
of parameters to the same value. We observe a higher error
rate of 3.55%, which indicates that while convolutions are
beneficial, data partitioning has additional benefits in im-
proving accuracy. This result demonstrates the potential of
ANT growth protocol for constructing performant models
with lightweight inference. See Sec. G in the supplementary
materials for the architecture of ANT-MNIST-C.

CIFAR-10 object recognition: we see that ANTs largely
outperform the state-of-the-art DT method, gcForest (Zhou
& Feng, 2017), achieving over 90% accuracy, demonstrating
the benefit of representation learning in tree-structured mod-
els. Secondly, with fewer number of parameters in single-
path inference, ANT-CIFAR-A achieves higher accuracy
than CNN models without shortcut connections (Goodfel-
low et al., 2013; Lin et al., 2014; Springenberg et al., 2015)
that held the state-of-the-art performance in respective years.
With simpler primitive modules we learn more compact
models (ANT-MNIST-B and -C) with a marginal compro-
mise in accuracy. In addition, initialising the parameters
of transformers and routers from a pre-trained single-path
CNN further reduced the error rate of ANT-MNIST-A by
20% (see ANT-MNIST-A* in Tab. 3), indicating room for

2Notably, CapsNets also feature a routing mechanism, but with
a significantly different mechanism and motivation.

improvement in our proposed optimisation method.

Shortcut connections (Fahlman & Lebiere, 1990) have re-
cently lead to leaps in performance in deep CNNs (He et al.,
2016; Huang et al., 2017). We observe that our best net-
work, ANT-MNIST-A*, has a comparable error rate and
half the parameter count (with single-path inference) to the
best-performing residual network, ResNet-110 (He et al.,
2016). Densely connected networks have better accuracy,
but with an order of magnitude more parameters (Huang
et al., 2017). We expect shortcut connections to improve
ANT performance, and leave integrating them to future
work.

5.2. Interpretability
The growth procedure of ANTs is capable of discovering
hierarchical structures in the data that are useful to the end
task. Without any regularization imposed on routers, the
learned hierarchies often display strong specialisation of
paths to certain classes or categories of data on both the
MNIST and CIFAR-10 datasets. Fig. 2 (a) displays an ex-
ample with particularly “human-interpretable” partitions e.g.
man-made versus natural objects, and road vehicles versus
other types of vehicles. It should, however, be noted that
human intuitions on relevant hierarchical structures do not
necessarily equate to optimal representations, particularly as
datasets may not necessarily have an underlying hierarchical
structure, e.g., MNIST. Rather, what needs to be highlighted
is the ability of ANTs to learn when to share or separate
the representation of data to optimise end-task performance,
which gives rise to automatically discovering such hierar-
chies. To further attest that the model learns a meaningful
routing strategy, we also present the test accuracy of the
predictions from the leaf node with the smallest reaching
probability in Supp. Sec. F. We observe that using the least
likely “expert” leads to a substantial drop in classification
accuracy. In addition, most learned trees are unbalanced.
This property of adaptive computation is plausible since
certain types of images may be easier to classify than others,
as seen in prior work (Figurnov et al., 2017).

5.3. Effect of refinement phase
We observe that global refinement phase improves the gener-
alisation error. Fig. 3 (Right) shows the generalisation error
of various ANT models on CIFAR-10, with vertical dotted
lines indicating the epoch when the models enter the refine-
ment phase. As we switch from optimising parts of the ANT
in isolation to optimising all parameters, we shift the optimi-
sation landscape, resulting in an initial drop in performance.
However, they all consistently converge to higher test accu-
racy than the best value attained during the growth phase.
This provides evidence that refinement phase remedies sub-
optimal decisions made during the locally-optimised growth
phase. In many cases, we observed that global optimisation
polarises the decision probability of routers, which occa-
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(a) Before refinement (b) After refinement
Figure 2: Visualisation of class distributions (red) and path probabilities (blue) computed over the whole test set at respective nodes of
an example ANT (a) before and (b) after the refinement phase. (a) shows that the model captures an interpretable hierarchy, grouping
semantically similar images on the same branches. (b) shows that the refinement phase polarises path probabilities, pruning a branch.

Figure 3: (Left). Test accuracy on CIFAR-10 of ANTs for varying amounts of training data. (Middle) The complexity of the grown
ANTs increases with dataset size. (Right) Refinement improves generalisation; the dotted lines show where the refinement phase starts.

sionally leads to the effective “pruning” of some branches.
For example, in the case of the tree shown in Fig. 2(b), we
observe that the decision probability of routers are more
concentrated near 0 or 1 after global refinement, and as a
result, the empirical probability of visiting one of the leaf
nodes, calculated over the validation set, reduces to 0.09%—
meaning that the corresponding branch could be pruned
without a negligible change in the network’s accuracy. The
resultant model attains lower generalisation error, showing
the pruning has resolved a suboptimal partioning of data.

5.4. Adaptive model complexity
Overparametrised models, trained without regularization,
are vulnerable to overfitting on small datasets. Here we
assess the ability of our proposed ANT training method to
adapt the model complexity to varying amounts of labelled
data. We run classfication experiments on CIFAR-10 and
train three variants of ANTs, All-CNN (Springenberg et al.,
2015) and linear classifier on subsets of the dataset of sizes
50, 250, 500, 2.5k, 5k, 25k and 45k (the full training set).
Here we choose All-CNN as the baseline as it has similar
number of parameters when trained on the full dataset and is
the closest in terms of constituent operations (convolutional,
GAP and FC layers). Fig.3 (Left) shows the corresponding
test performances. The best model is picked based on the
performance on the same validation set of 5k examples as
before. As the dataset gets smaller, the margin between

the test accuracy of the ANT models and All-CNN/linear
classifier increases (up to 13%). Fig. 3 (Middle) shows the
model size of discovered ANTs as the dataset size varies.
For different settings of primitive modules, the number of
parameters generally increases as a function of the dataset
size. All-CNN has a fixed number of parameters, consis-
tently larger than the discovered ANTs, and suffers from
overfitting, particularly on small datasets. The linear clas-
sifier, on the other hand, underfits to the data. Our method
constructs models of adequate complexity, leading to better
generalisation. This shows the value of our tree-building
algorithm over using models of fixed-size structures.

6. Conclusion
We introduced Adaptive Neural Trees (ANTs), a holistic
way to marry the architecture learning, conditional compu-
tation and hierarchical clustering of decision trees (DTs)
with the hierarchical representation learning and gradient
descent optimization of deep neural networks (DNNs). Our
proposed training algorithm optimises both the parameters
and architectures of ANTs through progressive growth, tun-
ing them to the size and complexity of the training dataset.
Together, these properties make ANTs a generalisation of
previous work attempting to unite NNs and DTs. Finally,
we validated the claimed benefits of ANTs for regression
(SARCOS dataset) and classification (MNIST & CIFAR10
datasets), whilst still achieving high performance.
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Suárez, A. and Lutsko, J. F. Globally optimal fuzzy decision
trees for classification and regression. IEEE Transactions.
PAMI, 21(12):1297–1311, 1999.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich,
A., et al. Going deeper with convolutions. In CVPR,
2015.

Teerapittayanon, S., McDanel, B., and Kung, H. T.
Branchynet: Fast inference via early exiting from deep
neural networks. In ICPR, 2016.

Veit, A. and Belongie, S. Convolutional networks with
adaptive computation graphs. CoRR, 2017.

Vijayakumar, S. and Schaal, S. Locally weighted projection
regression: An o(n) algorithm for incremental real time
learning in high dimensional space. In ICML, volume 1,
pp. 288–293, 2000.

Volkovs, M., Yu, G. W., and Poutanen, T. Content-based
neighbor models for cold start in recommender systems.
In Proceedings of the Recommender Systems Challenge
2017, pp. 7. ACM, 2017.

Xiao, H. Ndt: Neual decision tree towards fully functioned
neural graph. arXiv preprint arXiv:1712.05934, 2017.

Xiao, T., Zhang, J., Yang, K., Peng, Y., and Zhang, Z. Error-
driven incremental learning in deep convolutional neural
network for large-scale image classification. In ACM
Multimedia, 2014.

Zeiler, M. D. and Fergus, R. Visualizing and understanding
convolutional networks. In ECCV, pp. 818–833. Springer,
2014.

Zhao, H., Stretcu, O., Negrinho, R., Smola, A., and Gordon,
G. Efficient multi-task feature and relationship learning.
arXiv preprint arXiv:1702.04423, 2017.

Zhou, Z.-H. and Feng, J. Deep forest: Towards an alternative
to deep neural networks. In IJCAI, 2017.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. ICLR, 2017.



Supplementary Materials: Adaptive Neural Trees

A. Training algorithm

Algorithm 1 ANT Optimisation
Initialise topology T and parameters O . T is set to a root node with one solver
and one transformer
Optimise parameters in O via gradient descent on NLL . Learning root classifier
Set the root node “suboptimal”
while true do . Growth of T begins

Freeze all parameters O
Pick next “suboptimal” leaf node l ∈ Nleaf in the breadth-first order
Add (1) router to l and train new parameters . Split data
Add (2) transformer to l and train new parameters . Deepen transform
Add (1) or (2) to T if validation error decreases, otherwise set l to “optimal”
Add any new modules to O
if no “suboptimal” leaves remain then

Break
Unfreeze and train all parameters in O . Global refinement with fixed T

B. Additional related work
Here we provide an expanded review of related works, pre-
cluded from the main text due to space limit. The tree-
structure of ANTs naturally performs conditional computa-
tion. We can also view the proposed tree-building algorithm
as a form of neural architecture search. We provide surveys
of these areas and their relations to ANTs.

Conditional computation: in NNs, computation of each
sample engages every parameter of the model. In contrast,
DTs route each sample to a single path, only activating
a small fraction of the model. Bengio (2013) advocated
for this notion of conditional computation to be integrated
into NNs, and this has become a topic of growing inter-
est. Rationales for using conditional computation ranges
from attaining better capacity-to-computation ratio (Ben-
gio et al., 2013; Davis & Arel, 2013; Bengio et al., 2015;
Shazeer et al., 2017) to adapting the required computation
to the difficulty of the input and task (Bengio et al., 2015;
Almahairi et al., 2016; Teerapittayanon et al., 2016; Graves,
2016; Figurnov et al., 2017; Veit & Belongie, 2017). We
view the growth procedure of ANTs as having a similar
motivation with the latter—processing raw pixels is subop-
timal for computer vision tasks, but we have no reason to
believe that the hundreds of convolutional layers in current
state-of-the-art architectures (He et al., 2016; Huang et al.,
2017) are necessary either. Growing ANTs adapts the archi-
tecture complexity to the dataset as a whole, with routers
determining the computation needed on a per-sample basis.

Neural architecture search: the ANT growing procedure
is related to the progressive growing of NNs (Fahlman &
Lebiere, 1990; Hinton et al., 2006; Xiao et al., 2014; Chen
et al., 2016; Srivastava et al., 2015; Lee et al., 2017; Cai

et al., 2018; İrsoy & Alpaydın, 2018), or more broadly, the
field of neural architecture search (Zoph & Le, 2017; Brock
et al., 2017; Cortes et al., 2017). This approach, mainly via
greedy layerwise training, has historically been one solution
to optimising NNs (Fahlman & Lebiere, 1990; Hinton et al.,
2006). However, nowadays it is possible to train NNs in an
end-to-end fashion. One area which still uses progressive
growing is lifelong learning, in which a model needs to
adapt to new tasks while retaining performance on previous
ones (Xiao et al., 2014; Lee et al., 2017). In particular,
Xiao et al. (2014) introduced a method that grows a tree-
shaped network to accommodate new classes. However,
their method never transforms the data before passing it to
the children classifiers, and hence never benefit from the
parent’s representations.

Whilst we learn the architecture of an ANT in a greedy,
layerwise fashion, several other methods search globally.
Based on a variety of techniques, including evolutionary al-
gorithms (Stanley & Miikkulainen, 2002; Real et al., 2017),
reinforcement learning (Zoph & Le, 2017), sequential opti-
misation (Liu et al., 2017) and boosting (Cortes et al., 2017),
these methods find extremely high-performance yet complex
architectures. In our case, we constrain the search space to
simple tree-structured NNs, retaining desirable properties of
DTs such as data-dependent computation and interpretable
structures, while keeping the space and time requirement
of architecture search tractable thanks to the locality of our
growth procedure.

Cascaded trees and forests: another noteworthy strand
of work for feature learning with tree-structured models is
cascaded forests—stacks of RFs where the outputs of inter-
mediate models are fed into the subsequent ones (Montillo
et al., 2011; Kontschieder et al., 2013; Zhou & Feng, 2017).
It has been shown how a cascade of DTs can be mapped
to NNs with sparse connections (Sethi, 1990), and more
recently Richmond et al. (2015) extended this argument to
RFs. However, the features obtained in this approach are
the intermediate outputs of respective component models,
which are not optimised for the target task, and cannot be
learned end-to-end, thus limiting its representational qual-
ity. Recently, Feng et al. (2018) introduced a method to
jointly train a cascade of gradient boosted trees (GBTs) to
improve the limited representation learning ability of such
previous work. A variant of target propagation (Lee et al.,
2015) was designed to enable the end-to-end training of
cascaded GBTs, each of which is non-differentiable and
thus not amenable to back-propagation.
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C. Set-up details
Data: we perform our experiments on the SARCOS robot
inverse dynamics dataset3, the MNIST digit classification
task (LeCun et al., 1998) and the CIFAR-10 object recog-
nition task (Krizhevsky & Hinton, 2009). The SARCOS
dataset consists of 44,484 training and 4,449 testing exam-
ples, where the goal is to map from the 21-dimensional input
space (7 joint positions, 7 joint velocities and 7 joint accel-
erations) to the corresponding 7 joint torques (Vijayakumar
& Schaal, 2000). No dataset preprocessing or augmentation
is used. The MNIST dataset consists of 60, 000 training
and 10, 000 testing examples, all of which are 28 × 28
grayscale images of digits from 0 to 9 (10 classes). The
dataset is preprocessed by subtracting the mean, but no data
augmentation is used. The CIFAR-10 dataset consists of
50, 000 training and 10, 000 testing examples, all of which
are 32× 32 coloured natural images drawn from 10 classes.
We adopt an augmentation scheme widely used in the litera-
ture (Goodfellow et al., 2013; Lin et al., 2014; Springenberg
et al., 2015; He et al., 2016; Huang et al., 2017) where im-
ages are zero-padded with 4 pixels on each side, randomly
cropped and horizontally mirrored. For all three datasets,
we hold out 10% of training images as a validation set. The
best model is selected based on the validation accuracy over
the course of ANT training, spanning both the growth phase
and the refinement phase, and its test accuracy is reported.

Training: both the growth phase and the refinement phase
of ANTs are performed on a single Titan X GPU on all three
datasets. For all the experiments in this paper, we employ
the following training protocol: (1) optimise parameters
using Adam (Kingma & Ba, 2014) with initial learning rate
of 10−3 and β = [0.9, 0.999], with minibatches of size 512;
(2) during the growth phase, employ early stopping with a
patience of 5, that is, training is stopped after 5 epochs of
no progress on the validation set; (3) during the refinement
phase, train for 300 epochs for SARCOS, 100 epochs for
MNIST and 200 epochs for CIFAR-10, decreasing the learn-
ing rate by a factor of 10 at every multiple of 50. Training
times are provided in Supp. Sec. D.

We observe that the patience level is an important hyper-
parameter which affects the quality of the growth phase;
very low or high patience levels result in new modules un-
derfitting or overfitting locally, thus preventing meaningful
further growth and limiting the accuracy of the resultant
models. We tuned this hyperparameter using the valida-
tion sets, and set the patience level to 5, which produced
consistently good performance on SARCOS, MNIST and
CIFAR-10 datasets across different specifications of prim-
itive modules. A quantitative evaluation on CIFAR-10 is
given in Supp. Sec. E.

3http://www.gaussianprocess.org/gpml/
data/

In the SARCOS experiments, all the non-NN-based meth-
ods were trained using scikit-learn (Pedregosa et al., 2011).
Hidden layers in the baseline MLPs are followed by tanh
non-linearities and contain 256 units to be consistent with
the complexity of transformer modules.

Primitive modules: we train ANTs with a range of primi-
tive modules as shown in Tab. 2 in the main text. For simplic-
ity, we define the modules based on three types of NN lay-
ers: convolutional, global-average-pooling (GAP) and fully-
connected (FC). Solver modules are fixed as linear models
e.g. linear classifier and linear regression. Router modules
are binary classifiers with a sigmoid output. All convolu-
tional and FC layer are followed by ReLU or tanh non-
linearities, except in the last layers of solvers and routers.
For image classification experiments, we also apply 2× 2
max-pooling to feature maps after every d transformer mod-
ules where d is the downsample frequency. For the SAR-
COS regression experiment, hidden layers in the routers
and transformers contain 256 units. We balance the number
of parameters in the router and transformer modules to be
of the same order of magnitude to avoid favouring either
partitioning the data or learning more expressive features.

D. Training times
Tab. 5 summarises the time taken on a single Titan X GPU
for the growth phase and refinement phase of various ANTs,
and compares against the training time of All-CNN (Sprin-
genberg et al., 2015). Local optimisation during the growth
phase means that the gradient computation is constrained
to the newly added component of the graph, allowing us to
grow a good candidate model under 3 hours on one GPU.

Table 5: Training time comparison. Time and number of
epochs taken for the growth and refinement phase are shown.
along with the time required to train the baseline, All-CNN
(Springenberg et al., 2015).

Growth Fine-tune
Model Time Epochs Time Epochs
All-CNN (baseline) – – 1.1 (hr) 200
ANT-CIFAR10-A 1.3 (hr) 236 1.5 (hr) 200
ANT-CIFAR10-B 0.8 (hr) 313 0.9 (hr) 200
ANT-CIFAR10-C 0.7 (hr) 285 0.8 (hr) 200

E. Effect of training steps in the growth phase
Fig. 4 compares the validation accuracies of the same ANT-
CIFAR-C model trained on the CIFAR-10 dataset with vary-
ing levels of patience during early stopping in the growth
phase. A higher patience level corresponds to more training
epochs for optimising new modules in the growth phase.
When the patience level is 1, the architecture growth termi-
nates prematurely and plateaus at low accuracy at 80%. On
the other hand, a patience level of 15 causes the model to
overfit locally with 87%. The patience level of 5 gives the
best results with 91% validation accuracy.

http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/
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Figure 4: Effect of patience level on the validation accuracy trajectory during training. Each curve shows the validation accuracy on
CIFAR-10 dataset.

F. Expert specialisation
We investigate if the learned routing strategy is meaningful
by comparing the classification accuracy of our default path-
wise inference against that of the predictions from the leaf
node with the smallest reaching probability. Tab. 6 shows
that using the least likely “expert” leads to a substantial
drop in classification accuracy, down to close to that of
random guess or even worse for large trees (ANT-MNIST-C
and ANT-CIFAR10-C). This demonstrates that features in
ANTs become specialised to the subsets of the partitioned
input space at lower levels in the tree hierarchy.

Table 6: Comparison of classification performance between
the default single-path inference scheme and the prediction
based on the least likely expert. between the

Module Spec. Error % Error %
(Selected path) (Least likely path)

ANT-MNIST-A 0.69 86.18
ANT-MNIST-B 0.73 81.98
ANT-MNIST-C 1.68 98.84
ANT-CIFAR10-A 8.32 74.28
ANT-CIFAR10-B 9.18 89.74
ANT-CIFAR10-C 9.34 97.52

G. Visualisation of discovered architectures
Fig. 5 shows ANT architectures discovered on the MNIST
(i-iii) and CIFAR-10 (iv-vi) datasets. We observe three no-
table trends. Firstly, a large proportion of the learned routers
separate examples based on their classes (red histograms)
with very high confidence (blue histograms). The ablation
study in Sec. 5. 1 (Tab. 4 in the main text) shows that such hi-
erarchical clustering benefits predictive performance, while
the conditional computation enables more lightweight infer-
ence (Tab. 3 in the main text). Secondly, most architectures
learn a few levels of features before resorting to primarily
splits. However, over half of the architectures (ii-v) still
learn further representations beyond the first split. Secondly,
all architectures are unbalanced. This reflects the fact that
some groups of samples may be easier to classify than oth-
ers. This property is reflected by traditional DT algorithms,
but not “neural” tree-structured models with pre-specified

architectures (Laptev & Buhmann, 2014; Frosst & Hinton,
2017; Kontschieder et al., 2015; Ioannou et al., 2016).

H. FLOPS
Tab.7 reports the floating point operations per second
(FLOPS) of ANT models for two inference schemes. The
results for ResNet110 and DenseNet were retrieved from
(Guan et al., 2017) and (Huang et al., 2018), respectively.
The FLOPs of all other models were computed using
TorchStat toolbox available at https://github.com/
Swall0w/torchstat. Using single-path inference re-
duces FLOPS in all ANT models to varying degrees.

Table 7: Comparison of FLOPs.
Model FLOPS FLOPS

(multi-path) (single-path)

M
N

IS
T

Linear Classifier 8K -
LeNet-5 231 K -
ANT-MNIST-C 99K 83K
ANT-MNIST-B 346K 331K
ANT-MNIST-A 382K 380K

C
IF

A
R

-1
0

Net-in-Net 222M -
All-CNN 245M -
ResNet-110 256M -
DenseNet-BC (k=24) 9388M -
ANT-CIFAR10-C 66M 61M
ANT-CIFAR10-B 163M 149M
ANT-CIFAR10-A 254M 243M

I. Ensembling
As with traditional DTs (Breiman, 2001) and NNs (Hansen
& Salamon, 1990), ANTs can be ensembled to gain im-
proved performance. In Tab. 8 we show the results of en-
sembling 8 ANTs (using the “-A” configurations for classi-
fication), each of which is trained with a randomly chosen
split between training and validation sets. We compare
against the single tree models, trained with the default split.
In all cases both the multi-path and single-path inference per-
formance is noticeably improved, and in MNIST we reach
close to state-of-the-art performance (0.29% versus 0.25%
(Sabour et al., 2017)) with significantly fewer parameters
(851k versus 8.2M).

https://github.com/Swall0w/torchstat
https://github.com/Swall0w/torchstat
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Figure 5: Illustration of discovered ANT architectures. (i) ANT-MNIST-A, (ii) ANT-MNIST-B, (iii) ANT-MNIST-C, (iv) ANT-CIFAR10-
A, (v) ANT-CIFAR10-B, (vi) ANT-CIFAR10-C. Histograms in red and blue show the class distributions and path probabilities at respective
nodes. Small black circles on the edges represent transformers, circles in white at the internal nodes represent routers, and circles in gray
are solvers. The small white circles on the edges denote specific cases where transformers are identity functions.

Table 8: Comparison of prediction errors of a single ANT versus an ensemble of 8, with predictions averaged over all ANTs in the
ensemble.

MNIST (Class Error %) CIFAR-10 (Class Error %) SARCOS (MSE)
Multi-path Single-path Multi-path Single-path Multi-path Single-path

Single model 0.64 0.69 8.31 8.32 1.384 1.542
Ensemble 0.29 0.30 7.76 7.79 1.226 1.372

Table 9: Parameter counts for a single ANT versus an ensemble of 8.

MNIST (No. Params.) CIFAR-10 (No. Params.) SARCOS (No. Params.)
Multi-path Single-path Multi-path Single-path Multi-path Single-path

Single model 100,596 84,935 1.4M 1.0M 103,823 61,640
Ensemble 850,775 655,449 8.7M 7.4M 598,280 360,766


