Repairing Neural Networks by Leaving the Right Past Behind

Ryutaro Tanno! Melanie F. Pradier ! Aditya Nori' Yingzhen Li?

Abstract

Prediction failures of machine learning models
often arise from deficiencies in training data, such
as incorrect labels, outliers, and selection biases.
However, such data points that are responsible for
a given failure mode are often not known a priori,
let alone a mechanism for repairing the failure.
This work draws on the Bayesian view of continual
learning, and develops a generic framework for both,
identifying training examples which have given rise
to the target failure, and fixing the model through
erasing information about them. This framework nat-
urally allows leveraging recent advances in continual
learning to this new problem of model repairment,
while subsuming the existing works on influence
functions as specific instances. Experimentally, the
proposed approach outperforms the baselines for
both identification of detrimental training data and
fixing model failures in a generalisable manner.

1. Introduction

Machine learning (ML) models often exhibit unexpected
failures once deployed in the “wild”. Recent lines of
research aim to alleviate different well-known shortcomings
in supervised models, such as vulnerability to annotation
errors (Frénay & Verleysen, 2013) and adversarial attacks
(Xu et al., 2020), sensitivity to data shifts (Koh et al., 2021),
and biases to underrepresented subgroups (Torralba & Efros,
2011; Chen et al., 2018; Sagawa et al., 2019). However, it
is often challenging to anticipate beforehand all plausible
failure scenarios, and protect against them pre-emptively. This
motivates developing a technique that is able to repair a model
on demand, as new failure cases arise in practice.

Undesirable behaviours of ML models commonly stem from
defects in the training data. However, it remains unclear how to
detect the causes of such failures programmatically, rendering
a manual troubleshooting necessary. Furthermore, once the
problems are uncovered, one would still need to design fixes,

"Health Intelligence, Microsoft Research Cambridge, UK
’Department of Computing, Imperial College London, UK.
Correspondence to: Ryutaro Tanno <rytanno@microsoft.com>.

(a) Training Data with Problems
& Resultant Failures at Deployment

Training data, D Undesirable behaviours

ﬁ F i?ﬁ ﬁ ﬁ » | w} diployment
LY R
TXIE L

¥]
;ﬁ ﬁEH

(b) Identify the "Causes", C
of Target Failures, F

LN}
;'_l
A set of failures, F

(c) Repair Model by Erasing
Information of Failure Causes, C

g Ly LN N
iﬁﬁiﬁ'ﬁﬁii i ﬁﬁi‘ﬁﬁﬁ\'
Bigigioly Tidgidg wWify

i F H ﬁ W Fixed model

Figure 1. (a) Datasets in real-world applications are often fraught
with issues such as annotation noise, low-quality inputs, anomalies,
and acquisition biases (e.g. demographic imbalances). Such issues
may give rise to undesirable performance of the trained models in
deployment. Our proposed method aims at repairing such models
by (b) identifying a set of detrimental training examples which have
caused the target failures, and then (c) erasing efficiently the memories
of those examples from the models.

which typically involve further data curation/collection, and
model retraining/redesigning from scratch. Executing the
above steps demand not only time, but also mature expertise
in the relevant ML areas, a scarcity in the present job market.

This work introduces an approach to identifying a set of most
detrimental training examples that have caused failure cases
observed at test time, and to subsequently repairing the model
on these failures by deleting those culprits. At the basis of both
cause identification and repairment steps is the approximated
“counterfactual” posterior distribution when some training
examples are assumed absent. We formalise this as a Bayesian
continual (un)learning problem (Nguyen et al., 2017), where
the above counterfactual posterior is estimated by deleting the
evidence of selected training data from the current posterior. We
note that, while other factors (e.g. model class and optimisation)
may play a role, we focus on “data debugging” and investigate,
to what extent, prediction failures could be remedied by only
intervening on data and updating the model accordingly.

Fig. 1 gives an overview of the proposed approach for model
repairment, which operates in two steps by 1) identifying causes

Repairing Neural Networks by Leaving the Right Past Behind

of failure among training data, and 2) updating the model by
erasing the “memories” of those harmful examples. Impor-
tantly, the proposed framework is agnostic to why a particular
datapoint hurts model performance, handling both, issues in the
input data and/or labels. We only require specification of the
set of failed cases for which we wish to improve performance.

Our contributions: This work formalises the task of model
repairment, and develops a generic framework for this new
task. The framework connects both identification and removal
of detrimental data under a (Bayesian) continual learning
perspective, which enables leveraging advances in continual
learning for model repairment. This is demonstrated by: 1) a
novel development that extends Elastic Weight Consolidation
(Kirkpatrick et al., 2017) — a specific continual learning
algorithm — to cause identification and information removal;
and 2) a formal discussion on the linear influence function
(Koh & Liang, 2017) as another specific instance, which shows
the generality of our framework. Empirical studies show the
utility of the proposed approach for model repairment in a
variety of settings in which training data are contaminated with
annotation and/or input noise.

2. Model Repairment by Data Deletion

Let us consider a prediction model p(y|0,x) that returns a prob-
ability distribution of the output y given an input . We make
the i.i.d. modelling assumption and denote p(6|D) as the poste-
rior distribution over the model parameters 6 given training data
D = {(x™,y™)}N_,. At test time, the posterior predictive
distribution is used to infer label y* given a new sample x*:

p(y*la* D)= /p<y*|x*,e>p<ou>>de, M

where p(y*|x*,0) is the likelihood term for sample (z*,y*).
While we use approximate posteriors in practice, we focus on
the exact case for now to formalise the problem.

Imagine that in deployment this model makes incorrect pre-
dictions in certain situations. After collecting a set of examples
from such failure mode in the test set!, F = {(:cgcn) 7y§c"))}2[i1,
we would like to repair the model, such that it improves
performance on the failure set F and similar future cases. We
also argue that a successful repairment should also maintain
a similar level of performance on the rest of test examples.
These two objectives of model repairment are, in some sense,
analogous to those of a medical treatment, in that both aim to
fix a specific problem while leaving the “healthy” part as intact
as possible. A further discussion of the model repairment task,
including generalisation, efficiency and specificity aspects, is
provided in Appendix A.1.

!There may be multiple different ways in which the model fails,
and therefore the set of failure cases may consist of several groups.
In practice, one type of mistake might incur more costs than others
(e.g. in certain medical applications, false negative is more costly than
false positive). Here we assume that we have identified at least one
failure type that we would like to fix.

In this work, we assume that the main reason for such failures
F is due to the existence of detrimental examples in the
training data D, for example, noisy labels, low-quality inputs
and/or group imbalances. Our hypothesis is that, by removing
these harmful datapoints and adapting the model accordingly,
the model can be repaired to return correct predictions for dat-
apoints in F as well as similar future cases. We acknowledge
that there might be other reasons for a model to make wrong
predictions on F, such as optimisation and model biases, which
are outside the scope of this work. Addressing data-based
failures is complementary to accounting for other problems and
is of relevance regardless, as datasets typically come with unex-
pected issues no matter how much we curate them beforehand.

We formulate the process of model repairment as the
following two steps (see Fig. 1 for an illustration):

1. Cause identification: Identify a set of detrimental
datapoints C in the training data D that contributed the
most to the failure set F.

2. Treatment: Given the set of failure causes C, adapt the
model to predict correctly on the failure set F, while
maintaining performance on remaining test examples.

Below we describe a formal framework for performing these
two steps. In the first phase of cause identification, we need
to define a measure of how much a subset of training examples

C={(@"™ y")}Ne | D is responsible for the failure cases
JF. To this end, we propose to check how much the posterior
predictive distribution on F changes as a result of deleting C

from the training data:
7(C)=logp(F|D\C) —logp(F|D) @

where p(F|D) and p(F|D\ C) are the posterior predictive
distributions before and after removing a subset of training
examples C. If a given C leads to a large value of 7(C) in Eq. 2,
it would mean that removing C from D would have improved
the performance of the Bayesian predictive inference on the
failure set F. The first causal identification step thus entails
finding a subset C with the maximal log-density ratio 7(C). In
the second treatment step, we can directly adopt p(F|D\C)
as the updated predictive distribution that needs to be inferred,
as it confers the largest improvement over the failure cases. In
other words, for both the search of detrimental datapoints and
repairment of the model, we need to compute p(F|D\C).

The central computational question is, therefore, concerned
with the efficient calculation of p(F|D\C) without retraining
the model from scratch. The reasons for avoiding retraining
are: (1) in the cause identification step, it is computationally
prohibitive as retraining needs to be done for every subset
C C D; and (2) in the treatment step, the resulting retrained
model may be drastically different from the original model
one would like to fix (due to, e.g. noises in the SGD-based
optimisation and parameter re-initialisation), and may lose other

Repairing Neural Networks by Leaving the Right Past Behind

desirable properties that one may wish to retain. In this work,
we thus argue for continual learning approaches (Parisi et al.,
2019) to approximate p(F|D\C), given their computational
efficiency and their natural ability to maintain model behaviour.
We now elaborate on the mathematical details of the two steps.

2.1. Step I: Cause Identification

Identifying the set of detrimental examples C requires solving
the following optimisation problem

C=argmaxc:ep(p)r(C'), 3)

where P(D) denotes the power set of D. Solving this problem
comes with multiple computational challenges.

Firstly, a naive approach would require computing the
predictive distribution p(F|D\ C) — and thus, the posterior
p(0)D\C) — for every subset C of D, which is prohibitively
expensive. In the following, we present a ‘‘predictive”
approach that removes this computational burden. The key
idea is to notice that p(D \ C|0) = p(D|0)/p(C|0) for any
C C D due to the i.i.d. modelling assumption. Inserting this
into the Bayes’ rule for computing p(@|D\C) yields:

logp(FID\C) =log / P(F|0)p(6ID\C)d0

g [PIOIDON0) y_ pD1C)
p(Cl0) p(D) p(D)
Notice that p(D\ C)/p(D) = fp(clw) %g’)’@de again due
to the i.i.d. assumption. Therefore, we can rewrite the log
density ratio 7(C) =logp(F|D\C) —logp(F|D) in such a way
that does not require calculation of the posterior p(6|D\C):

_ . [PEID.F) p(6|D)
r(C)—log/WdB—log/ 2(C10) de. @

In this form, we would only need to compute the posterior
p(0|D,F) once, and can side-step the requirement of comput-
ing p(6|D\C) for inspection of every new C C D, thereby re-
moving one of the key computational bottlenecks. The detailed
derivation of Eq. (4) is provided in Sec. A.2 in the appendix.

Secondly, we are still left with the combinatorial search for
the best subset C, which is also prohibitive when the size of
training data D is large. We address this issue by a first-order
Taylor series approximation of r(C) that factorises over the
samples in C. Let us re-write the log density ratio as

r(C)=F(1,p(8|D,F))—-F(1,p(0|D)), (5
F(e,g(0)) ::1og/g(0)e—€10gp(cl9)d9_ ©)

Note that F'(0,g(8))=0 for any well-defined distribution g(8).
We now perform a Taylor expansion of Eq. (6) around € =0,
which returns the following when ¢(8) is a distribution:

F(€,9(8)) =—€Ey) [logp(C|0)]+O(e?). ©)

Algorithm 1 Model Repairment

Input: training data D; failure cases J; approximate posterior over
the parameters g(0) ~p(0|D); likelihood p(z|0)
Output: failure causes C, “repaired” posterior g7\ ¢ (6)

Step I: Cause Identification

Update posterior: Apply a continual learning method to obtain
ap,7(0) =p(0|D,F) by fitting the failure set 7

Compute influences of training examples on F: Calculate
7(z)Vz€D (Eq. (9))

Find failure causes C: Return the examples with positive
influence, C < {z € D: #(z) >0}

Step II: Treatment

Delete information about C from the model: Apply a continual
(un)learning method to g(0), and obtain the posterior on the
corrected dataset g7\ ¢ (0) ~p(0|D\C)

We compute an approximate log density ratio 7*(C) =7(C) by
plugging the previous Taylor expansion into Eq. (5):

7#(C) :=Ey,6p)[logp(C|0)] —E,gp,7)[logp(C|0)]. (8)

Assuming that data are i.i.d., and defining z = (,y), the above
approximation can be expressed as the sum of individual log
density ratios, #*(C) =) __ .- (z), where each term is given by

#(2) =Epo/p) [logp(2]0)] —E, 61, 7)[logp(2(0)],

where p(z|0) = p(y|x,0). With this approximation, in order
to find a subset C that leads to the maximal #(C), it suffices
to compute 7(z) for every training example z € D and find the
top K examples with largest 7*(z) values, thereby reducing the
search space from O(|D|!) choices to only O(|D|) choices.

In practice, the causes of failure will correspond to examples
z with 7#(z) > 0. Intuitively, 7*(z) measures how much the
posterior predictive moments of z changes when the model
is further trained on F, i.e., computation of p(6|D,F). If the
moment difference is positive, i.e., *(z) >0, it means that the
example z € D is a conflicting evidence against the test exam-
ples in F; conversely, if #*(z) < 0, then z and F are aligned.
See Algorithm 1 for specification of the whole procedure.

Lastly, for non-linear models (e.g. neural networks), approx-
imate posteriors ¢(0) ~ p(6|D) and g, »(0) ~ p(@|D,F)
are needed due to intractability of the exact posteriors. We
assume that ¢(0) is available after training, and suffers from the
prediction failures 7. As recomputing the posterior ¢, ~(0)
from scratch can be expensive, we propose to use a continual
learning technique (Parisi et al., 2019) and obtain this quantity
by updating the original posterior ¢(0). Finally, we use the
following metric 7(z) in practice to calculate the detrimental
impact of each training datapoint on the failure set, F:

7(z):=Eqy(9)[logp(z160)] —Egy, _(e)[logp(z160)] (9)

and approximate the failure causes C. This metric is generic,
and the detail implementation depends on the specifics in which

Repairing Neural Networks by Leaving the Right Past Behind

both ¢(0) and g7, 7(6) are computed, e.g. MLE/MAP point es-
timates, Laplace approximation, variational inference, etc. We
end by providing two concrete examples: the first shows that
the well-known linear influence function (Koh & Liang, 2017)
is a specific instance of Eq. (9); and the second is derived by ex-
tending a continual learning method, known as Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) to cause identi-
fication, and is a key methodological development in our work.

EXAMPLE 1: LINEAR INFLUENCE FUNCTION

Our proposed metric in Eq. (9) recovers the linear influence
function (Koh & Liang, 2017) when point estimates are used for
6. Assume that the model is trained on data D with parameters
6, which corresponds to an approximation of MLE/MAP
estimates, i.e., ¢(8) =0(8—8) ~p(6|D). After observing the
set of failures F, a point estimate of p(@|D,F) is obtained by
performing a single update of natural gradient ascent (Amari,
1998) on the log likelihood of F with step size > 0:

ég’}-zé—&—vﬁglvélogp(ﬂé) (10)

where 13'@ is the empirical Fisher information matrix. Defining
the updated posterior as g3, () =4 (0—6*), we have that

7(2)=—7Vlogp(F|0) " F, ' Vlogp(=]6). (11)

The negation of the above equation coincides with the definition
of linear influence function (Eq. (2) in Koh & Liang (2017))
when the failure set is assumed to be F ={z*} and y=1.

EXAMPLE 2: ELASTIC WEIGHT CONSOLIDATION

The generality of Eq. (9) permits any continual learning
method of one’s choice for estimating the updated posterior
¢ 7(0)~p(6|D,F) after observing failure samples F. Here
we illustrate how EWC (Kirkpatrick et al., 2017) as a continual
learning method can be adopted in the context of cause iden-
tification. EWC approximates p(6|D,F) by first performing
the Laplace approximation of the original posterior p(8|D)
around the point estimate 6, and subsequently finding the MAP
solution of 6. Formally, 9{) # is obtained by maximising the ob-
jective below w.r.t. @ via SGD (see Appendix A.3 for details):

. A R
logp(F0) — = (6-0) " F,(6-0)—~Z[l0-0]15, (12)

N
2
where the off-diagonal elements of 1:"9 are dropped for

memory reason in practice. Defining ¢(6) = §(6 — é) and
4p 7(0)=0(6—07, =), we have that

7(2) zlogp(z|9) —logp(z|9{)’}-). (13)

To compute the above for each datapoint z € D, we only need
to solve the optimisation problem of Eq. (12) by SGD once.
We refer to this version of 7(z) as EWC-influence function.

Comparison: The EWC-influence function generalises the
linear influence approach. To see this, we derive the fixed point
of the EWC objective Eq. (12) w.r.t. € (where we set A=0):

0=6+N""F, ' Vglogp(F|6). (14)

Then the parameter update in Eq. (10) that is implicitly used by
linear influence function can be viewed as (damped) one-step
fixed-point iteration update initialised at 6 for solving the
fixed-point equation. As EWC-influence update (Eq. (13)) is
obtained by using the optimum of Eq. (12), it is arguably more
accurate than linear influence function (Eq. (11)) for measuring
the (detrimental) effect of a datum z to the model failures F.

2.2. Step II: Treatment

Once the causes C of the test-time failures F are identified
among the training data D, we seek to repair the model ¢(6)
by erasing the memories of C. We formalise this problem as
the computation of the posterior p(6|D \ C) under the new
assumption that C is absent from the training data D. A naive
approach would re-run approximate inference on the whole
“corrected” dataset D\ C to obtain an approximate posterior
4p\c(0)~p(6]D\C) which can be time consuming. But more
fundamentally, by doing so, the obtained qg\c(e) may be
unrelated to the original ¢(6) based on which C were identified,
due to, e.g. non-convex SGD optimisation issues. Moreover,
this “model replacement” approach may not maintain other
good properties of the original model ¢(#). Analogous to
cause identification (Sec. 2.1), we propose to employ the
continual learning approach to estimate efficiently the modified
posterior p(68|D\C). Applying Bayes’ rule and some algebraic
manipulations (see Appendix A.4) yield

p(6/D\C) xp(6]D)/p(C|6). (15)

Therefore the information about C can be removed by scaling
the current posterior p(@|D) by the inverse of p(C|6) and
re-normalising. Using this update rule, we can treat the approx-
imation of p(@|D\C) as a continual learning problem, where
the task is to “unlearn” the datapoints in C while using the
posterior distribution p(@|D) as the prior. In practice, the target
model to be fixed corresponds to the approximate posterior
q(0) ~p(0|D). Therefore continual (un)learning is done by

4p\c(0)xq(0)/p(C|0) ~p(6|D\C). (16)

The above approximation can be carried out with different ap-
proximate inference techniques such as MLE/MAP point esti-
mate, Laplace approximation (Kirkpatrick et al., 2017) and vari-
ational inference (Nguyen et al., 2017). At the end of this sec-
tion, we also provide a few examples to concretise this process.

We highlight the deep connection between the “predictive
approach” for cause identification (Sec. 2.1), and the continual
(un)learning for data deletion in the treatment step. Although

Repairing Neural Networks by Leaving the Right Past Behind

the two steps entail different computations, they share the key
idea of editing the posterior distribution ¢(@) via continual
learning. This can be seen from the factor graph interpretation
of posterior distributions, where posterior editing just corre-
sponds to editing the selected factors in the graph, e.g. insertion
of F in cause identification, and deletion of C in treatment.

EXAMPLE 1: FINE-TUNING ON CORRECTED DATA

Given a point estimate of model parameters 0.ie., q(0) =
(0 —8), a simple way to approximate p(8|D\ C) is to fine-
tune on the corrected dataset D\ C and update the point estimate.
The new 9;5*\0 of the repaired model are obtained by maximis-

ing the log-likelihood logp(D\C|@) via SGD, starting from 6.

EXAMPLE 2: NEWTON UPDATE REMOVAL

Guo et al. (2019) proposed a Newton update based method
for data deletion. This method reduces to a specific form of
Eq. (16) when using negative log-likelihood as its loss:

ég\czé—'yl:'glvélogp(ﬂé)‘ 17)

Here information about C gets deleted by performing a single-
step natural gradient descent on their log likelihood (Amari,
1998). Also, notice the similarity with the way linear influ-
ence (Koh & Liang, 2017) is computed in Eq. (10), illuminating
the relation between cause identification and treatment steps.

EXAMPLE 3: EWC FOR DATA DELETION

The update rule in Eq. (16) for data deletion is amenable to any
continual learning approaches. For example, given model pa-
rameters 9 EWC-based deletion obtains new parameters 9%* c
by maximising the following objective (see Appendix A.4):

logp(Clo)— 3 (6-0) Fy(0-6)-J1I0—0l3 (19
where the first term seeks to remove information about C while
the remaining terms discourage parameters from deviating
from the original values. Contrasting this with Eq. (12) again
reveals the connection between EWC methods for cause
identification and treatment steps.

Comparison: Similar to the comparison made in the cause
identification part, EWC for data deletion also generalises the
Newton update removal (Eq. (17)). This can again be shown by
deriving (damped) one-step fixed point iterative update starting
from 6 to approximate the fixed point of Eq. (18) when A=0.
As EWC for deletion uses SGD to approximate optimum of
Eq. (18), it is arguably better than Newton update removal
for erasing the effects of detrimental examples C, while better
maintaining performance on other cases.

3. Related work

Model Editing. There is a recent surge of interest in
developing targeted updates to correct model’s undesirable

behaviours, while leaving other desired properties intact. As
naive fine-tuning methods often lead to overfitting to the failure
examples and accuracy degradation on others, various strategies
have been proposed. For example, Zhu et al. (2020) employ a
simple regularization technique to minimize parameter changes
during the fine-tuning phase. Subsequent works (Sinitsin et al.,
2020; Cao et al., 2021) advocate for a functional regularisation
instead, e.g. KL divergence in the output space, to achieve
better regularisation. These lines of work, additionally, propose
to use meta-learning (Finn et al., 2017) to learn to edit the target
model, where the latest meta-learning approach is proposed by
Mitchell et al. (2021). Another promising approach (Santurkar
et al., 2021) performs weight editing so that features of a
specific concept (e.g. snow) map to the features of another (e.g.
road). A commonality among these approaches is the focus on
direct model edits for correction. Our work takes an orthogonal
and under-explored angle where the aim is to “edit” the data
instead, by identifying and removing harmful examples which
cause failures — in turn, this difference makes our framework
complementary to these model-editing approaches.

Continual learning. Continual learning is an active research
area with a related but broader scope than model repairment,
which aims to develop methods that adapt the model for fu-
ture tasks while maintaining model performance on previously
learned tasks (Parisi et al., 2019). We focus on a more targeted
problem in this work, yet introduce a framework that allows the
use of any continual learning approach for model repairment.
Our experiments presents EWC (Kirkpatrick et al., 2017) as a
practical instantiation of the framework. One can also leverage
improvements over EWC such as online EWC (Schwarz et al.,
2018), or other regularisation-based methods that are motivated
by Bayesian learning principles, such as variational continual
learning (Nguyen et al., 2017; Pan et al., 2020; Loo et al., 2021),
synaptic intelligence (Zenke et al., 2017), and orthogonal gradi-
ent descent (Farajtabar et al., 2020). As approximations to 7(C)
rely on accurate posterior approximations, advances in Bayesian
continual learning methods are expected to improve the prac-
tical effectiveness of model repairment under our framework.

Data Selection and Valuation. Multiple techniques have
been introduced for selecting “influential” training examples
on a chosen metric (e.g. test accuracy), such as influence
functions (Koh & Liang, 2017; Koh et al., 2019; Barshan et al.,
2020; Giordano et al., 2019; Hara et al., 2019; Khanna et al.,
2019), Shapley value-based approaches (Ghorbani & Zou,
2019; Ancona et al., 2019; Jia et al., 2019) and probability of
sufficiency (Chakarov et al., 2016). Within the category of in-
fluence functions, two representative approaches include linear
influence function (Koh & Liang, 2017) and SGD-influence
(Hara et al., 2019). The former approach performs one-step
update only, thus, while efficient, it may be less accurate in
reflecting the influence of a datum z. The latter approach
computes a projected difference between 6 and 97*3, £ but with

97*3, £ obtained by running SGD fine-tuning on training data

Repairing Neural Networks by Leaving the Right Past Behind

without z. Thus SGD-influence is computationally inefficient.
Compared to both baselines, our EWC-influence approach
achieve the best in both worlds: it produces more accurate
influence estimates than linear influence due to better optimisa-
tion, while it is more efficient than SGD-influence as it requires
only one optimisation procedure on the given failure set .

Data Deletion. This work mainly considers detrimental data
removal in the treatment step, which is related to data deletion,
a rapidly developing field of machine learning research (Bour-
toule et al., 2019; Guo et al., 2019; Ginart et al., 2019; Izzo et al.,
2020; Neel et al., 2020; Gupta et al., 2021). Closest to our work
is variational Bayesian unlearning (Nguyen et al., 2020) which
extends variational Bayes to data deletion settings. But the
connection to continual learning is not explicitly made, and it is
limited to applications in logistic regression and sparse Gaussian
processes. In general, the main focus of existing data deletion re-
search is to preserve data privacy, and datapoints to be removed
are assumed provided. On the contrary, in this work, we focus
on the repairment of models and propose a unified procedure
not only to remove data but also to identify which ones to do so.

4. Experiments

We evaluate the efficacy of the proposed framework in a) iden-
tifying the causes of target prediction failures in Sec. 4.1, and b)
repairing the original model by erasing the memories of such
causes in Sec. 4.2. We evaluate on the image recognition task
using augmented versions of MNIST and CIFAR-10 datasets
contaminated with simulated annotation and input noise.

Baselines. For the cause identification task, we compare
our approach (EWC-influence) against the linear influence
function (Koh & Liang, 2017) and SGD-influence (Hara
et al., 2019). To avoid expensive computation of 1:"@_1, Koh
& Liang (2017) introduced two efficient approximations to
the Hessian-vector product Fg 'Velogp(F|6); the first solves
arg nﬁnv{vTFé_lv(w—logp(]-' |6)T'v} with gradient descent
(GD), while the second uses an iterative algorithm for stochastic
approximation (SA) from Agarwal et al. (2016). We implement
these two variants (GD & SA) of linear influence in Pytorch,
and use the original implementation for SGD-influence.

For the model treatment task, we compare our method
(EWC-deletion) against Newton update removal (Guo et al.,
2019). This method again requires computing a Hessian-vector
product for which we employ the same stochastic approxima-
tion technique (Agarwal et al., 2016). To isolate the evaluation
of cause identification and treatment, we further consider in
Section 4.1 fine-tuning on D\C as another repairment strategy,
which would return the best repairment result if the set C
correctly captures the detrimental datapoints.

Common Set-up. In all experiments, we train the base
classification models on the training split of the “augmented”
MNIST and CIFAR-10 datasets. For MNIST, we use 6%

(3000 samples) of the original training set to make the task
more challenging. We use instances of CNNs throughout and
train them using the Adam optimiser (Kingma & Ba, 2014).
The architecture and training details can be found in Appendix
C. For evaluation, we separate the test set 7 into the set of
misclassified examples, F (“‘failure set”) and the others, 7\ F
which are correctly classified (“remaining set”). We further
split the failure set into query, F, and holdout, Fj, sets, where
we only use the former to identify failure causes C, and use
the latter to quantify how generalisably the removal of C can
amend the failure cases. We stress that ./ is used for cause
identification only, but not for further model adaptation.

4.1. Identifying Failure Causes

Annotation Noise. To induce test prediction failures, for the
training set we randomly flip labels between semantically sim-
ilar classes (e.g. 1 and 7 for MNIST, and cats and dogs for
CIFAR-10) according to the confusion matrices in Fig. 2(a). As
a result, the classes of miss-classified test examples are concen-
trated on those classes with label noise as depicted in Fig. 2(b).

To measure the accuracy of identifying incorrectly labelled
examples, we inspect the training examples z € D in the de-
scending order of 7(z) computed with F, which contains 50%
of the miss-classified test cases, and calculate the fraction of
incorrectly labelled datapoints in inspected examples. Fig. 2(c)
shows that EWC-influence identifies more failure causes earlier
on compare to other methods, and is the closest match to the
“Oracle” baseline which has full knowledge of samples with
wrong labels. Fig. 2(d) shows that the top few causes according
to EWC-influence are the samples with incorrect labels, while
the least harmful ones are the images of the same classes but
with the correct labels as shown in Fig. 7 in Appendix B.

As stipulated in Sec. 2, a set of identified causes C is of higher
quality if removing them leads to a larger gain in accuracy on
the failure set while maintaining performance on others. To
measure such quality of causes, we fine-tune the base model on
D\ C and report the accuracy on the failure query set F, the
holdout failure set F, as well as the remaining test set, 7\ F.
Results in Fig. 3 suggest that removing failure causes according
to EWC-influence yields the highest increase in accuracy on
the failure set F without hurting performance in the remaining
test set 7\ F. We also note that all of the methods are able to
fix the failures better than randomly removing datapoints, and
more interestingly, for MNIST, when enough causes are erased
(= 10%), all methods even surpass the case in which all label
noise instances are removed. This result implies that, while
annotation noise is a major detrimental factor, the prediction
failures also arise from other types of harmful examples.

Lastly, we evaluate the sample efficiency of cause identification
by reducing the size of the query set ;. Fig. 6 in Appendix
B shows that all approaches degrade gracefully in repairment
performance as the query size gets smaller, but overall EWC-

Repairing Neural Networks by Leaving the Right Past Behind

100

wlo o8
A
B N

(a) Label Noise Models (b) Class Distribution
N D of Missclassification
—~ _1{ofo o o0 oo o o
5] QU 2{0 o 00 0 0 [300
[% 3{0 0 00 0 o0 4 250
— 4{0 o 00 00 o6 =
(] 3200
S s{0 o 0 00 o
£ oo ops |[*0 O
o 0
ofo
940

slo o o o o

9 0o 1 2 3 4 5 6 7 8 9

Classes

CIFAR 10
True label

Classes

(c) Label Noise Identification (d) Top 16 Failure Causes

2 Label = 6

Label=1 Label=1

“@4/ El G

Label=1 Label=1 Label=1

Label = 1

—e— Random
Linear Influence (SA)
—e— Linear Influence (GD)
—e— SGD-influence
—e— EWC-influence (Ours)

-=-- Oracle :7
00 0z 04 06 08 10

Label = “bird" Label = "bird" Label = "bird" Label = ‘cat"

Label = "bird" Label = *bird

-r?
EE

Labol = birg" Label ="bird” Labol = bird" Label = bic

Linear Influence (SA)
—e— Linear Influence (GD)
—e— SGD-influence

—e— EWC-influence (Ours)

--- Oracle (e

00 02 04 06 05 0

Fraction of Data Inspected

Label = "bird" Label =

e

Fraction of Incorrect Labels Fixed Fraction of Incorrect Labels Fixed

Figure 2. Results on cause identification in the presence of annotation noise. (a) shows the confusion matrices used to simulate class-dependent
label noise on MNIST and CIFAR-10. (b) shows the class distribution of the misclassified examples for a single run. (c) plots how much of
the identified causes match the samples with incorrect labels for different approaches. The shade represents the standard deviation computed
from 5 different runs. (d) shows the top 16 causes of the failures as ranked by EWC-influence.

(a) Fixing Failures

MNIST CIFAR-10

—e— Random: Query
- Random: Holdout

Linear Influence (SA): Query

Linear Influence (SA): Holdout

—e— Linear Influence (GD): Query

- Linear Influence (GD): Holdout

—e— SGD-influence: Query

- SGD-influence: Holdout

—e— EWCinfluence (Ours): Query

- EWC-influence (Ours): Holdout

-~ Semi-Oracle: Trained without Label Noise
Original model

Accuracy on Failure Set

°

0 10° 107 102 10° 0 10° 107 102 10° 107
Number of Instances Removed Number of Instances Removed

(b) Maintaining Accuracy

-
& MNIST CIFAR-10

1 1

(%]

& 0.98] % 0.99)

2 TR i

.C 099 TT; w [§§::iii:£
_5094 i ‘ 0.98 eIy !i‘
g ! ;

Q 0.92] 097

[~4

C 090 & Random 096/ m Random

o ® Linear Influence (SA) m Linear Influence (SA)

> 0.88| W Linear Influence (GD) W Linear Influence (GD)

O W SGD-influence 0.95| m SGD-influence

© m EWC-influence (Ours) W EWC-influence (Ours)

L 086 Original model Original model

3 - Semi-Oracle: Trained without Label Noise 0.94 -~ Semi-Oracle: Trained without Label Noise

o 0 10° 10! 107 10° 0 10° 10! 10? 10° 10%
< Number of Instances Removed Number of Instances Removed

Figure 3. Comparison of the quality of identified causes in the presence of annotation noise. The impact of gradually removing samples in
MNIST and CIFAR-10 datasets in the order of influence values r(z) are measured on the failure sets (holdout and query) in (a), and on the
remaining test set in (b). We also plot the performance of another reference (‘“‘semi-oracle”) that is the original model fine-tuned on the training
data without the label noise instances. The means and standard deviations of all quantities are calculated over 5 different runs.

influence still remains the best in terms of label noise detection
and repairment accuracy on the failure set and the remaining set.

Random Input Noise. In this experiment, we inject synthetic
outliers into MNIST and CIFAR-10 and test the quality of
cause identification. We select a set of target classes — 1, 7,
6, 9 for MNIST and plane, bird, cat, dog for CIFAR-10 — and
randomly corrupt 30% of the images in those classes by
adding salt-and-pepper in MNIST and Gaussian noise in
CIFAR-10. The top row in Fig. 4 shows some examples, and
those corrupted images constitute roughly 12% of the whole
training set. Sec. C in the appendix provides more details.

‘We use a subgroup of failures in the target classes as the query
J, to compute influence values. Surprisingly, the second rows
in Fig. 4(a) and (b) show that EWC-influence largely avoids
selecting the corrupted images as the top 1000 causes for
MNIST and the top 20000 causes for CIFAR-10. However,
the third and the fourth rows show that removing those causes
results in the best treatment performance on failures while
maintaining the performance at a level similar to other baselines.
In fact, removing all the input noise and retraining is not able to

fix the failures by much, indicating that EWC-influence is able
to correctly avoid these relatively harmless outliers and detect
other more harmful causes. Fig. 8 in Appendix B visualises the
most harmful examples identified by EWC-influence. Many
of them appear to be ambiguous instances in non-target classes,
e.g. wonky digits, close-up views of vehicles, a real instance
with incorrect label (Northcutt et al., 2021), etc.

Adversarial Poisoning. To simulate input noise that can
induce test-time failures, we introduce contaminated data
by randomly corrupting 30% of the training images in those
previously mentioned target classes. These poisoned datapoints
are adversarial images crafted by the fast gradient sign method
(FGSM) (Goodfellow et al., 2014) on a separate set of victim
models trained on the original clean datasets, and they are
labelled by the classes predicted by the victim models. The
poisoned datasets are then used to train the base models that
are used for evaluation of cause identification.

Fig. 4(c) and (d) show that most of the influence functions
detect the corrupted samples better than the “random” baseline.
The dashed lines in the third row show that removing all of the

Repairing Neural Networks by Leaving the Right Past Behind

(a) MNIST

+ Random Noise
Label: 0

(b) CIFAR-10

+ Random Noise
bird

Label: 1 Label: 4

7000

— Random — e —————

—— Linear Influence (SA)

6000 | — Linear Influence (GD)
—— sGD-influence

5000 | = EWC-influence (Ours)

== Oracle

000

3000

2000

— Random
— Linear Influence (SA)
—— Linear Influence (GD)
~—— SGD-influence

— EWCinfluence (Ours)
== Oracle

1
1
1
1
1
1
I
'I
2000 |-y
1

30000

Number of Corrupted Images Detected
Number of Corrupted Images Detected

To00 000 %0 o000 a0 30000
Number of Data Inspected Number of Data Inspected

—+ Removed AllInput Noise

—- Removed All Input Noise
92

Accuracy on Failure Set

ol
Random Linear Linear SGD EWC Random Linear Linear SGD EWC
Influence Influence Influence Influence Influence Influence Influence Influence

(sA) (GD) (Ours) (SA) (GD) (Ours)

=

5T 5567 xh “he

05
Random Linear Linear
Influence Influence Influence Influence
(SA) D)

Random Linear Linear SGD EWC
Influence Influence Influence Influence
(SA) (GD) (Ours)

Accuracy on Remaining Test Set
Accuracy on Remaining Test Set

(c) MNIST (d) CIFAR-10
+ Adversarial Attacks + Adversarial Attacks
0=>6 1=>7 3=>9 cat => deer

dog => bird plane => deer
E

6000)

5000

4000|

— Random
—— Linear Influence (SA)
— Linear Influence (GD)
—— sGD-influence

—— EWC-influence (Ours)
== Oracle

2000|

—— Linear Influence (SA)
—— Linear Influence (GD)
—— SGD-influence

— EWC-influence (Ours)
== Oracle

1
1
I
1
1
1
1
1
30000
1
1
1
1
1
oo f
I

Number of Corrupted Images Detected

000 30000

Number of Corrupted Images Detected

1000 2000 0000 70000 S0000
Number of Data Inspected Number of Data Inspected

—- Removed All Input Noise

—- Removed All Input Noise 0731

Accuracy on Failure Set
Accuracy on Failure Set

0
Random Linear Linear SGD EWC
Influence Influence Influence Influence
(

0.0
Random Linear Linear SGD EWC

Influence Influence Influence Influence

(SA) (GD) (Ours)

05!
Random Linear Linear SGD EWC

Influence Influence Influence Influence

s D) (ours)

05!
Random Linear
Influence ~ Influence Influence Influence
(SA) D)

Accuracy on Remaining Test Set
Accuracy on Remaining Test Set

Figure 4. Results on cause identification in the presence of different input noises. From top to bottom, we show i) examples of corrupted samples
(synthetic proxy for potential causes of failure), ii) how many of the identified causes correspond to samples corrupted with input noise, iii) and
iv) performance in failure holdout set /7, and remaining test set when removing the top 1000/20000 identified causes in MNIST/CIFAR-10. The
influence values are calculated with respect to 50% of test-time failure cases that belong to the classes that suffer from input noise. EWC-Influence
identifies “harmful” (adversarial) input noise better than random while avoiding “harmless” (random) input noise.

corrupted inputs lead to a significant gain in accuracy on the
holdout failure set in comparison with the random noise setting,
illustrating the larger extent of harms caused by data poisoning.
However, most of the identification methods still outperform
this reference by a large margin. This suggests again for the
presence of other influential samples, and EWC-influence
is able to pick up the most important ones, judging by the
accuracy on the failure set.

Speed Comparison. Table 1 in Appendix B shows the total run-
time of cause identification methods on a single GPU for their
best sets of hyper-parameters selected based on the treatment
accuracy on the failure set. For both datasets, EWC-influence
achieves comparable or shorter run time than the baselines.

4.2. Comparison of Treatment Methods

We evaluate the performance of different deletion-based
methods for treatment introduced in Sec. 2.2 on MNIST and
CIFAR10 datasets with simulated annotation noise, used in
the previous section. We run both EWC-deletion (ours) and
Newton update removal (Guo et al., 2019) methods with early
stopping based on the query set accuracy, and experiment with
different hyper-parameter settings (see Sec. C in Appendix)

T
) L 4 ¢ L 4
o 0.95) \ - *
+ :]
K, ; * *®
0.90) * . 0.95| S
o I [“
= KAy
‘T 0.85] L 2 I :
£ b
€ e * . 0.90)
£ i
< 0.75 4 EWC-deletion ‘ A= B
S # Newton-Update-Deletion 1
> oo . Finetuning on Corrected Data 0-83) . @ EWCdeletion
b *, 4 Random & & Newton-UpdateDeletion
© y Finetuning on Corrected Data
B 0.65| ‘ 4 Random
2 01 02 5 0807%10 014 018 022

03 04 05 0%
Accuracy on Failure Set Accuracy on Failure Set
a

(b)
Figure 5. Comparison of deletion-based treatment methods on (a)
MNIST and (b) CIFAR-10. For Newton-update-deletion and EWC-
deletion, we plot multiple results for varying hyper-parameters to

visualise the trade-off between the accuracy on the failure set and the
remaining set. The closer to the top right corner, the more desirable.

to achieve different trade-offs between failure set accuracy and
remaining set performance. Such trade-off is shown in Fig. 5,
where fine-tuning on D\ C is included as an “upper-bound”
reference for data deletion performance. On MNIST, EWC-
deletion attains a considerably better trade-off between treat-
ment and maintenance compared to Newton-update-deletion,
and is much closer to the fine-tuning reference. For CIFAR-10,
EWC-deletion beats the Newton-update deletion by 5% in the
best failure accuracy while the order reverses for the best accu-
racy on the remaining test set but with less than 1% difference.

Repairing Neural Networks by Leaving the Right Past Behind

5. Conclusions

In this work, we develop a generic framework for repairing
machine learning models by erasing memories of detrimental
datapoints. The framework consists of two key components,
that are, the mechanism for identifying the “causes” in training
data which are responsible for the given failures, and the adap-
tation method for fixing the model by removing information
about them. Two components are connected under the Bayesian
view of continual (un)learning, which brings forth several
practical benefits. Firstly, the framework subsumes some recent
works on influence function and data deletion as specific ex-
amples, and elucidate their limitations. Secondly, the generality
of our approach allows leveraging recent advances in continual
learning in this new problem of model repairment. In particular,
we extend Elastic Weight Consolidation to cause identification
and information removal, and demonstrate empirically its
competitive performance in both tasks. Future work will
investigate the values of adapting more recent continual learn-
ing approaches, and also study other types of data correction
mechanisms (e.g. label correction, sample/label acquisition).

Acknowledgements

We would like to thank Ozan Oktay, Stephanie Hyland, and
Ted Meeds at Microsoft Research Cambridge and Jin Chen
at University College London for their valuable feedback on
an early version of this work.

References

Agarwal, N., Bullins, B., and Hazan, E. Second-order
stochastic optimization in linear time. stat, 1050:15, 2016.

Amari, S.-I. Natural gradient works efficiently in learning.
Neural computation, 10(2):251-276, 1998.

Ancona, M., Otztireli, C., and Gross, M. Explaining deep
neural networks with a polynomial time algorithm for
shapley value approximation. In International Conference
on Machine Learning, pp. 272-281. PMLR, 2019.

Barshan, E., Brunet, M.-E., and Dziugaite, G. K. Relatif:
Identifying explanatory training examples via relative
influence. arXiv preprint arXiv:2003.11630, 2020.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C., Jia, H.,
Travers, A., Zhang, B., Lie, D., and Papernot, N. Machine
unlearning. arXiv preprint arXiv:1912.03817, 2019.

Cao, N. D., Aziz, W, and Titov, L Editing fac-
tual knowledge in language models. 2021. URL
https://arxiv.org/abs/2104.08164.

Chakarov, A., Nori, A., Rajamani, S., Sen, S., and Vijaykeerthy,
D. Debugging machine learning tasks. arXiv preprint
arXiv:1603.07292, 2016.

Chen, L., Johansson, E. D., and Sontag, D. Why is my classifier
discriminatory? In Advances in Neural Information
Processing Systems, pp. 3539-3550, 2018.

Farajtabar, M., Azizan, N., Mott, A., and Li, A. Orthogonal
gradient descent for continual learning. In International
Conference on Artificial Intelligence and Statistics, pp.
3762-3773. PMLR, 2020.

Finn, C., Abbeel, P, and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks. In
International Conference on Machine Learning, pp.
1126-1135. PMLR, 2017.

Frénay, B. and Verleysen, M. Classification in the presence of
label noise: a survey. IEEE transactions on neural networks
and learning systems, 25(5):845-869, 2013.

Ghorbani, A. and Zou, J. Data shapley: Equitable valuation
of data for machine learning. In ICML, 2019.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making ai
forget you: Data deletion in machine learning. In Advances
in Neural Information Processing Systems, pp. 3518-3531,
2019.

Giordano, R., Stephenson, W., Liu, R., Jordan, M., and
Broderick, T. A swiss army infinitesimal jackknife. In The
22nd International Conference on Artificial Intelligence and
Statistics, pp. 1139-1147, 2019.

Goodfellow, 1. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Guo, C., Goldstein, T., Hannun, A., and van der Maaten,
L. Certified data removal from machine learning models.
arXiy preprint arXiv:1911.03030, 2019.

Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi,
S., and Waites, C. Adaptive machine unlearning. arXiv
preprint arXiv:2106.04378, 2021.

Hara, S., Nitanda, A., and Maehara, T. Data cleansing for
models trained with sgd. In Advances in Neural Information
Processing Systems, pp. 4213-4222,2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp.
770-778, 2016.

1zzo, 7., Smart, M. A., Chaudhuri, K., and Zou, J. Approximate
data deletion from machine learning models: Algorithms
and evaluations. arXiv preprint arXiv:2002.10077, 2020.

Jia, R, Dao, D., Wang, B., Hubis, F. A., Hynes, N., Giirel,
N. M., Li, B., Zhang, C., Song, D., and Spanos, C. J.
Towards efficient data valuation based on the shapley

https://arxiv.org/abs/2104.08164

Repairing Neural Networks by Leaving the Right Past Behind

value. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1167-1176. PMLR, 2019.

Khanna, R., Kim, B., Ghosh, J., and Koyejo, S. Interpreting
black box predictions using fisher kernels. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 3382-3390, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521-3526, 2017.

Koh, P. W. and Liang, P. Understanding black-box predictions
via influence functions. In ICML, 2017.

Koh, P. W., Sagawa, S., Xie, S. M., Zhang, M., Balsubramani,
A., Hu, W,, Yasunaga, M., Phillips, R. L., Gao, L, Lee,
T., et al. Wilds: A benchmark of in-the-wild distribution
shifts. In International Conference on Machine Learning,
pp- 5637-5664. PMLR, 2021.

Koh, P. W. W,, Ang, K.-S., Teo, H., and Liang, P. S. On the
accuracy of influence functions for measuring group effects.
In Advances in Neural Information Processing Systems, pp.
5254-5264, 2019.

Loo, N., Swaroop, S., and Turner, R. E. Generalized
variational continual learning. In International Conference
on Learning Representations, 2021. URL https:
//openreview.net/forum?id=_IM-AfFhna9.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning,
C. D. Fast model editing at scale. CoRR, 2021. URL
https://arxiv.org/pdf/2110.11309.pdf.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-delete:
Gradient-based methods for machine unlearning. arXiv
preprint arXiv:2007.02923, 2020.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. Variational
continual learning. arXiv preprint arXiv:1710.10628, 2017.

Nguyen, Q. P, Low, B. K. H., and Jaillet, P. Variational bayesian
unlearning. arXiv preprint arXiv:2010.12883, 2020.

Northcutt, C. G., Jiang, L., and Chuang, I. L. Confident
learning: Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research (JAIR), 70:1373-1411, 2021.

Pan, P, Swaroop, S., Immer, A., Eschenhagen, R., Turner, R. E.,
and Khan, M. E. Continual deep learning by functional
regularisation of memorable past. In Advances in Neural
Processing Information Systems, 2020.

Parisi, G. 1., Kemker, R., Part, J. L., Kanan, C., and Wermter, S.
Continual lifelong learning with neural networks: A review.
Neural Networks, 113:54-71, 2019.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P. Dis-
tributionally robust neural networks for group shifts: On the
importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

Santurkar, S., Tsipras, D., Elango, M., Bau, D., Torralba, A.,
and Madry, A. Editing a classifier by rewriting its prediction
rules. In Neural Information Processing Systems (NeurIPS),
2021.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska,
A., Teh, Y. W,, Pascanu, R., and Hadsell, R. Progress &
compress: A scalable framework for continual learning.
In International Conference on Machine Learning, pp.

4528-4537. PMLR, 2018.

Sinitsin, A., Plokhotnyuk, V., Popov, S., and Babenko, A.
Editable neural networks. arXiv preprint arXiv:2004.00345,
2020.

Torralba, A. and Efros, A. A. Unbiased look at dataset bias.
In CVPR 2011, pp. 1521-1528. IEEE, 2011.

Xu, H., Ma, Y., Liu, H.-C., Deb, D., Liu, H., Tang, J.-L., and
Jain, A. K. Adversarial attacks and defenses in images,
graphs and text: A review. International Journal of
Automation and Computing, 17(2):151-178, 2020.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International Conference
on Machine Learning, pp. 3987-3995. PMLR, 2017.

Zhu, C., Singh Rawat, A., Zaheer, M., Bhojanapalli, S., Li, D.,
Yu, E, and Kumar, S. Modifying memories in transformer
models. arXiv preprint arXiv:2012.00363, 2020.

https://openreview.net/forum?id=_IM-AfFhna9
https://openreview.net/forum?id=_IM-AfFhna9
https://arxiv.org/pdf/2110.11309.pdf

Repairing Neural Networks by Leaving the Right Past Behind:
Supplementary Material

A. Algorithmic details
A.1. Problem formulation for model repairment

This section extends the discussion on the problem formulation of model repairment. Specifically, under the modelling assumptions
presented in the main text, the goals for model repairment are the following:

* For a set of “failure cases” F ={z; = (a,y)} where the model with (Bayesian) predictive inference makes wrong predictions,
repair the model to make correct predictions on F and similar cases.

* For a set of “benchmark cases” B={z, = (x,y)}, maintain a given level of prediction accuracy after model repairment.

There are further considerations for executing and evaluating model repairment in practice.

Generalisation and efficiency of model repairment In practice the number of failure cases might be large or even infinite.
For example, an image classification model that fails on a test input with Gaussian noise may also fail on all the other inputs
with such level of noise. So we need to consider both, generalisation and efficiency aspects of model repairment. Here, good
generalisation means that the failure is fixed, not only for observed failure cases but also for future cases for which the model
would make the same type of failure before fixes. On the other hand, efficiency of repairment considers the number of failure
examples required for the model repairment method to fix a particular type of failure.

To describe both concepts in more details, in addition to a set of known/observed failure examples F collected by the users, we
need to define the set of unknown/unobserved failure examples F;. If examples in F and JF¢; are similar, then good generalisation
of a model repairment algorithm means that a model repaired by such method using information from JF should produce correct
predictions for instances in J;;. On the other hand, a model repairment method is efficient if it only needs a small set F of
collected failure cases to achieve good generalisation of repairment.

Specificity of model repairment Furthermore, there may be multiple different scenarios in which the model fails, and therefore
the set of failure cases may consist of several groups, i.e.,

m

F=uM_ Fm | Fy=uM_ F, (19)

where F(™) denotes the observed failure cases of failure type m and .F[Sm) represents unobserved failure cases of the same type.
Targeting a specific type of mistake and repairing it one at a time may be desirable in practice. One type of mistake might incur
more costs than others (e.g., in medical applications, false negative is generally more costly than false positive), so users might
have different priorities for different types of errors to be fixed. This is especially the case when there exists a trade-off between
fixing different types of errors, again the false negative vs false positive trade-off is a prevalent example.

Repairment by identifying and removing detrimental training data There can be many different reasons for a model with
Bayesian predictive inference making wrong predictions on F. In this work, we assume that the main reason is due to the existence
of detrimental datapoints in D. Our hypothesis is that, by removing/correcting these detrimental datapoints and adapting the
model with them, the model can be repaired to return correct labels for datapoints in F. Base on the above hypothesis, the model
repairment process contains the following steps:

1. Cause identification: Identify a set of detrimental data points C in the training data D that contributed the most to the failure
set F.

2. Treatment: Given the set of failure causes C, adapt the model to predict correctly on the failure set F, while maintaining
performance on other examples which were correctly predicted previously.

Repairing Neural Networks by Leaving the Right Past Behind

A.2. The “predictive approach” for cause identification

We use the following function to describe the contribution of a subset C C D to the model failures on examples in F:

L FED\O)
“C)l‘)g((7 D) >

A naive approach would compute p(@|D\ C) for all subsets of D with all possible correction methods, which is prohibitively
expensive. Instead we present a “predictive’ approach that removes this computational burden. First, notice that we make the
1.1.d. modelling assumption which means that one can write the likelihood term as follows:

(20)

p(D|0)=p(D\C|0)p(C|0), VCCD. (2)
This allows us to expand the log evidence logp(F|D\C) as

logp(FID\C)=log / P(FI0)p(OID\C)d0

~log / p(f|0)Wd0 (Bayes” rule)

/ p(F6)- CD6|9 ol D(\)C) 40 (byEq. (21)
=log / pf o0 Qg))]EZ;))) d9 (multiplying Z Eg; and rearranging terms)
=1 / b J;'g (6|D)d6+log (Z()Yi)c). (Bayes’ rule)

Then we can rewrite the log density ratio as

L FED\O)
T(C)‘1°g< P(FID))

log/i(glg)p(0|D)d0logp(f|D)+logp(D)log/lp(D\CO)p(O)dO

(by definition of marginal distributions)
(22)

I O) p(DI6) p(6)
B g/ oCo) pFD) / o) o>

(by Eq. (21) and rearranging terms)

_ p(6D,F) p(@D) .
—1og/ (C10) df—lo, / (C|0)d0 (Bayes’ rule)

By doing so, instead of computing p(6|D\C) for every possible subset C, the “predictive approach” only requires computing
p(@|D,F) once. As shown in the main text, with (approximations of) the two posteriors p(6|D) and p(0|D,F) at hand, the
log density ratio (C) can be efficiently approximated by Monte Carlo and/or further approximations described in the main text
that employ Taylor expansions. This approach is “predictive” in the sense that the influence of candidate set C is evaluated by
computing “predictions” p(C|#)~! on them using the two posterior distributions, which is different from existing approaches
that compute predictions on F using approximations to the modified posterior p(6|D\C).

A.3. Objective for EWC-influence
Recall in the main text the first-order Taylor series approximation to r(C) is
r(C)x) #(z), #(z)=Eyop)llogp(|0)]~E,|p,x)[logn(2]0))-
zeC

Therefore the “predictive approach” for computing r(C) as well as the approximated form require the computation of (approximate)
posteriors p(0|D) and p(@|D,F). This can be achieved using continual learning: we assume the model has been trained on D

Repairing Neural Networks by Leaving the Right Past Behind

and an approximation ¢(6) ~p(6|D) has been obtained. Then the current task for continual learning is to adapt the trained model
on the failure cases J, which leads to an adapted approximation ¢z, »(0)~p(0|D,F).

Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) is a continual learning algorithm that can be interpreted as
updating the maximum a posteriori (MAP) approximation to the posterior given new tasks. To see this, first in this approach the
q posteriors are assumed to be delta measures. In other words, ¢(0)=4§(0— 9) where 6 is the parameters of the trained model, and
q4p, #(0)=0 (0—9;5’) where as we shall see 9;5’ is the parameter obtained by running EWC using F. With these assumptions,
the EWC-influence is defined as:

rC)xy #z)m)y F(2), F(z)=logp(2]0)—logp(z|0p).

zeC zeC
It remains to discuss the optimisation procedure for obtaining 95 £ As motivated, we consider MAP approximations to the
posterior, which seeks to find the maximum of the log posterior logp(6|D,F). Notice that by Bayes’ rule:
p(@|D,F) xp(F|0)p(0|D) = logp(0|D,F)=logp(F|@)+logp(6|D)-+-constant.

Computing the first term logp(F|@) in the MAP objective is straightforward given the i.i.d. modelling assumption. For the second
term, as logp(@|D) is intractable, the EWC approach constructs a Laplace approximation to it by assuming the trained model
parameter 0 as a MAP point estimate of p(@|D). In detail, a Laplace approximation to the posterior is

logp(0|D) ~ %(B—Q)TH[logp(éﬂ))] (0—6)+constant. 23)

where H|[f(0)] denotes the Hessian matrix of a twice-differentiable function f(@) with respect to parameters 0. Further
decomposing the Hessian term yields:

Hlogp(8|D)] = H [logp(D|#) +logp(8) —logp(D)] 24
= H{logp(D|0)]+ H [logp(6)] (25)
g_‘]rvj;vé Prio;'term

where N is the total number of samples in D and Fé is an empirical estimate of the Fisher information matrix. Assuming the

zero-mean isotropic Gaussian prior p(@) with precision A, the second term becomes H [logp(@)] = —AI. Substituting these
results back into Eq. (23) gives us:
N AT A A -
logp(0|D) ~ _E(e—e)TFé(e—e) ~5110-9] |2+constant. (26)

Combining terms, the optimisation task for EWC adaptation using failure set is:
- N AT oa AN R
05, » —argmax logp(F16)— (0-8) F,(6-8)— 7 ||0-0)3 @)

which is as presented in the main text. We further note that in the original EWC formulation, the empirical Fisher information
is further simplified to contain diagonal entries only — with millions of model parameters as is typically the case with neural
networks, as computing the full matrix is expensive.

A4. Objective for EWC-deletion

Assuming that the detrimental datapoints C C D have been identified, the next step for model repairment is treatment where we
seek to remove the influence of C to the model. This is done by computing (an approximation to) p(6|D\ C) which can also
be done via continue learning. To see this, we can show by using Bayes’ rule and Eq. (21) again,

logp(6|D\C) :logp(Dp\(g\Gé]))(H) ZIng(Cl|0) —l—logp(ig))];(e) —HngZ(?Zi)C) . (28)
=p(6|D)

This means that finding the MAP estimate of p(@|D\C) is equivalent to maximising —logp(C|0)+logp(6|D) w.rt. 8. With
further approximation to the posterior p(6|D) using the Laplace method as discussed in section A.3, one can write the optimisation
task for EWC-deletion as presented in the main text, namely:

N AT s D) .
(0-6)" Fy(6—0)—5[10-6]]3. 29)

Op\c —argiax —logp(C|0)— 9

Repairing Neural Networks by Leaving the Right Past Behind

B. Additional Results

B.1. Sample Efficiency of Cause Identification

Fig. 6 compares the sample efficiency of different approaches for cause identification on MNIST and CIFAR-10 datasets with
annotation noise. More specifically, we want to understand how many failure cases in the query set /;, we need to see for cause
identification to work, i.e., how performance of each approach varies as we reduce the size of the query set. Here, all detrimental
examples i.e., 7(z) <0 are removed from the training data and the corresponding metrics are measured. EWC-influence approach
performs the best in terms of precision, recall, and accuracy on holdout failure set F}, even as we decrease the size of the query
set. All approaches exhibit a stable behavior w.r.t the size of query set. The biggest drop occurs in accuracy on the remaining
test set 7\ F: EWC-influence presents a stronger degradation in small sample regimes (around 5% of the original failure set)
but without dropping below other approaches.

For the failure accuracy on MNIST, even when the query set is as small as 5% of the original one (=20 examples), all approaches
display improvement over the semi-oracle that is trained after removing all instances of annotation errors: this means that all
methods, in a sample-efficient manner, not only correct the synthetically added annotation errors, but they also remove other
harmful examples that are naturally present to begin with.

0.40 4 0.950
0.9 ()
08 _A o (o e e [
* 4 ,‘ __.____ [} mo.gzs '.':.====l
'S Sad S e A | 2™
g ~ S~ o C ~ n
R S - --- GL) 7 "= 0900 ——=u
c 0.30 Random o7 2 ‘E E
* Linear Influence (SA) — * = 0.875
C_) @ Linear Influence (GD) | — 0.6 LI(E 06 *‘t‘ * E -l Random
0 .‘ SGD-influence ® (0] -l Linear Influence (SA)
O 0.25 EWC-influence (Ours) | O :. ~L gt c O 0.850 |-k Linear Influence (GD)
bt} g 0.5 —-.=——- O 05 o e - ——— - : SGD-influence
— — —& Random EWC-influence (Ours)
[a '% - ‘ 0.4 > —A Linear Influence (SA) O os2s — Semi-Oracle: .
0.20 . i (@] —A Linear Influence (GD) > Trained without Label Noise:
O--@-- e 0% | & seD-influence @)
« 0.3 .'_. o S —k EWC-influence (Ours) ® 0800
anaom .
0.15 ‘ * - —* —-_—— ‘ -@ Linear Influence (SA) > 03 _'Srrzrrr:égr;ictlﬁéut Label Noise 5
0.2 -@ Linear Influence (GD) &) A_A——‘\\ (@] 0.775 .'=='-_—.
@ SGD-influence S i ()]
010 o -® EWC-influence (Ours) o < 0.750
02 04 06 08 02 04 06 08 00 02 04 06 08 10 00 02 04 06 08 10
4
pam— —— gy R A S
0.28 "’” 0.85 ,.'”. 40'30.30 v 098
& wn (@)
026" o 080 |/ " c -a-a---1
- = p—— "= 097
’__’.- e ,_—. 50.25 ‘,A- “~,~‘ £ H
. -
C 024 ; —_ © - -
9 I‘ =070 I. urg E 0.96 * "'_ =
7)) ‘ [Y 0.20 (O] ==
5 Y] C o
O 022 L _J
Q &JO'GS o A.*_*___‘ C o095 | et - L
= > A-A---Al O
O o020 ’\\ _‘ 0.60 *.'~\ -9 9 15
1w - o - © ~A< >
- > * — e ‘ O 0.94
0.18 0.55 8 E
0.10
O Al 2 \ -
0.50 “. - - (@] ——
016 B*"’----q b:.==.--== < A ' 'y Q3| u
0.45 0.05 <
02 04 06 08 02 04 06 08 00 02 04 06 08 10 00 02 04 06 08 10
Fraction of Query Set Fraction of Query Set Fraction of Query Set Fraction of Query Set

Figure 6. Comparison of sample efficiency for cause identification performance on (top) MNIST and (bottom) CIFAR-10 datasets with
class-dependent annotation noise. On the x-axis of each sub-figure, we vary the size of the query failure set F; used for cause identification.
From left to right, (a) precision, (b) recall, (c) accuracy on holdout failure set F, and (d) accuracy on the remaining test set.

Repairing Neural Networks by Leaving the Right Past Behind

B.2. Speed Comparison

Table 1 shows the total computation time of the proposed EWC-influence and other baselines for cause identification on a single
Tesla K80 GPU with 12GB of RAM. Note that we rely on the publicly available implementation of SGD-influence?, and that
we have implemented our own version of linear influence functions in Pytorch. Overall, EWC-Influence is either as fast or faster
as other baselines, achieving one order of magnitude speed boost compared to SGD-influence in all cases. For CIFAR10 where
a considerably larger base model is used, EWC-influence is consistently faster than other approaches, around twice faster than
linear influence methods. For MNIST, EWC-influence attains similar computation time as linear influence approaches.

B.3. Qualitative Results

Annotation noise.

Table 1. Comparison of total computation time for cause identification.

Experiment Method Time (s) Time (s)
(MNIST) | (CIFARI10)

Linear Influence (SA) 16.4 1322.4
Label Noise | Linear Influence (GD) 11.2 996.2
SGD-Influence 185.1 8301.1
EWC-Influence (Ours) 9.8 496.3
Linear Influence (SA) 10.8 1141.1
Random Linear Influence (GD) 15.7 978.4
Input Noise SGD-Influence 188.2 8285.6
EWC-Influence (Ours) 11.0 527.5
Linear Influence (SA) 14.3 1312.0
Adversarial Linear Influence (GD) 10.0 984.2
Poisoning SGD-Influence 177.29 7803.7
EWC-Influence (Ours) 14.5 528.9

In the main text, Fig. 2(d) shows examples with annotation noise ranked as most harmful according to

EWC-influence. Similarly, Fig. 7 shows examples ranked as least harmful according to EWC-influence. All of these examples
correspond to non-corrupted examples with correct labels.

(b)

Figure 7. Examples of 16 least harmful examples for MNIST and CIFAR-10 with annotation noise as ranked by EWC-influence. None of
the selected examples were corrupted with annotation noise.

2https ://github.com/sato%ara/sgd-influence

https://github.com/sato9hara/sgd-influence

Repairing Neural Networks by Leaving the Right Past Behind

Random input noise. Fig. 8 shows examples that are ranked highest (most harmful) by EWC-influence for datasets contaminated
with random input noise. Recall that the target classes of the input noise are 1, 6, 7, 9 for MNIST and plane, bird, cat, dog for
CIFARI10, and the rest of the images are free of such noise. First of all, we observe that the most detrimental examples belong
to the non-target classes. As shown in the main text, while the input noise itself may not harm the performance of the model
by much, the sample size of clean images in the target classes is still smaller as a result of noise injection—such group imbalance
can be rectified by sub-sampling the dominant group, for example, by removing those identified detrimental data points. Secondly,
many of them appear to be ambiguous instances in non-target classes. It is worth noting that for MNIST, one of the identified
examples is interestingly a real instance of 3 that is incorrectly labelled as 5, which is also reported by Northcutt et al. (2021).

Label: 8 Label: 8 Label: 8 Label: 8 Label: truck Label: truck Label: truck Label: deer
I - 1 g —

Label: cat Label truck Label: horse Labe\ truck

I

Label: 8 Label: 8

M
._

Label frog

Label: 8

(b)

Figure 8. Examples of 16 most harmful examples for MNIST and CIFAR-10 with random input noise as ranked by EWC-influence. None
of the selected examples were corrupted with random input noise.

Label: horse

Labe\ deer Label: truck

B.4. Treating Models by Forgetting Detrimental Past and Learning from Present Mistakes

While the primary goal of this work is to investigate how many prediction errors can be remedied by identifying harmful training
data and removing them, one could alternatively use the labelled failure cases directly to adapt the model. Fig. 9 shows our
preliminary results where we compare the deletion based methods to an approach that fine-tunes the model directly on the failure
query set F, with an L2-norm based locality constraint ||6— 6|2 (Zhu et al., 2020) and its combination with the best deletion-based
approach, that is, fine-tuning on the corrected dataset D\ C. As with other experiments, early stopping is performed based on
the loss on a portion of the query set F,. We see that while fine-tuning on J, (black points) leads to a higher accuracy (on the
holdout failure set F,) than fine-tuning on D\ C (yellow points), the accuracy on the remaining test set 7 \ F is worse, even with
the weight constraint — by 6% on MNIST and 21% on CIFAR-10. This issue of over-fitting to the failure cases is also reported
in recent works such as (Cao et al., 2021; Sinitsin et al., 2020). Importantly, by combining the two approaches (brown points),
we can attain the best trade-off between the failure and the maintenance accuracy, indicating the complementarity between the
proposed data correction methods and such fine-tuning approaches.

5 (& PN] |]
L S *

- .
= 0ss n
[|
@ *
Cal e :
o
= 090
c 4 EWC-deletion
e ’ “ 4 Newton-Update-Deletion
£ ‘ Finetuning on Corrected Data
&) 080 ’ ‘ 0ss M Finetuning on Failures
c W Finetuning on Both
S * B Random
> @ EWC-deletion
Q 4 Newton-Update-Deletion
.. Finetuning on Corrected Data
8 W Finetuning on Failures
é() W Finetuning on Both

o 49 = Random o7 |]

oz o o os ow o om om om om _ ow od
Accuracy on Failure Set Accuracy on Failure Set
(@) (b)

Figure 9. Comparison of deletion-based treatment methods and the direct fine-tuning on the failures on (a) MNIST and (b) CIFAR-10 datasets
with noisy annotations.

Repairing Neural Networks by Leaving the Right Past Behind

C. Experimental Details

Datasets we perform our experiments on the MNIST digit classification task and the CIFAR-10 object recognition task. The
MNIST dataset consists of 60,000 training and 10,000 testing examples, all of which are 28 x 28 grayscale images of digits from 0
to 9 (10 classes). The CIFAR-10 dataset consists of 50,000 training and 10,000 testing examples, all of which are 32 x 32 coloured
natural images drawn from 10 classes. Both datasets are preprocessed by subtracting the mean, but no data augmentation is used.
For MNIST, to make the task more challenging, we randomly select 3000 examples from the training split and train the base
models while the entire test set is used for evaluation.

Architecture Details For MNIST, the base classifier was defined as a CNN architecture comprised of 4 convolution layers, each
with 3 x 3 kernels follower by Relu. The number of kernels in respective layers are {32,32,64,64}. After the first two convolution
layers, we perform 2 x 2 max-pooling, and after the last one, we further down-sample the features with Global Average Pooling
(GAP) prior to the final fully connected layer. For CIFAR-10, we used a 50-layer ResNet (He et al., 2016).

Optimisation For all experiments, we employ the same training scheme unless otherwise stated. We optimize parameters using
Adam (Kingma & Ba, 2014) with initial learning rate of 10~2 and 3= 1[0.9,0.999], with minibatches of size 64 and train for max
100 epochs with early stopping with a patience of 5, that is, training is stopped after 5 epochs of no progress on the validation
set (10% of the training set). For computing both EWC-influence and EWC-deletion, we also employed the same training scheme
but applied early stopping based on the performance on a validation split (10%) of the failure query set F,.

In Fig. 5 in Sec. 4.2, we present the performance of Newton update removal and EWC-deletion (ours) with different hyper-parameter
settings. For Newton-update deletion (Guo et al., 2019), we vary the step size v >0 of the gradient ascent by scaling the second
term in Eq. (17). For EWC-deletion (our method), we vary the amount of weight regularisation — the second term in Eq. (18)
— by scaling it by 2/vN where N denotes the number of training datapoints, and vy > 0. We also set the strength of the prior
term to A=0. We run both methods for different values of -y in the range [0.01,0.05].

