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26.1 Introduction
Machine learning has had a pivotal impact on medical image synthesis, which de-
scribes the task of synthesizing an image of a target modality. In this chapter, we
adopt a generic definition of the task in order to encompass both traditional synthe-
sis problems of generating images from available ones of different modalities [1–5],
and reconstruction problems in which the creation of images is performed from raw
acquisition data.1 Fig. 26.1 illustrates this categorization and the far-reaching impact
of machine learning methods in a number of synthesis applications.

As machine learning applications in image synthesis progress towards clinical
translation, the question of their safety at the “bedside” becomes paramount [34,35].
In particular, deep learning methods [36], which have recently demonstrated great
promise in image synthesis, often produce unexpectedly erroneous results in deploy-
ment domains when they deviate from the training one. Cohen et al. [34] provide
several examples of such catastrophic failures in which the deep learning synthesis
model overfits to biases in the training data and, as a result, either removes an ex-
isting focal pathology (e.g., lesions, tumors, etc.) or hallucinates spurious ones (see
Fig. 26.2), rendering the outputs unusable for subsequent clinical decisions. More re-
cently, Antun et al. [35] have shown that well-established deep learning approaches
to under-sampled MR reconstruction are unstable under small perturbations to the in-
put data (see Fig. 26.3). To make matters worse, such unreliable predictions are often
perceptually realistic, thus increasing the risks of letting such failures go undetected
and slip into the hands of clinicians. So long as the instability of machine learning
models remains a challenge in image synthesis, we will be in need of an effective
means to quantify the risks of failures and to ultimately prevent failures from arising.

1 This class of problems are usually referred to as inverse problems in imaging. From a statistical stand-
point, an inverse problem can also be interpreted as a generating process [6,7].
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FIGURE 26.1

The diagram illustrates our categorization of synthesis problems. We split the subject into two main branches. While operating in the image
domain (i.e. image-to-image synthesis), we identify two sub-categories: (i) within-modality image synthesis (e.g. denoising, super-resolution,
dealiasing, artifact correction); (ii) cross-modality image synthesis, focusing on knowledge transfer across medical image modalities. For exam-
ple, one may want to learn a mapping to translate image intensities between either two MRI contrasts or two image modalities: cross-modality
MRI (e.g. T1, T2, FLAIR, and MRA), MRI-to-CT or CT-to-MRI, Compressed Sensing (CS)-MRI, CT-to-PET or PET-to-CT. While operating in the
data acquisition domain (and data denotes the measurements collected from a given imaging modality), we identify a wide category of data-
to-image synthesis. This is also referred to as inverse problems in medical imaging, or image reconstruction. We then identify two sub-groups:
(i) canonical model-based regularization methods (e.g. variational and iterative) and (ii) data-driven methods, including unrolled optimization
methods (physics-guided) and agnostic domain-transform methods (purely data-driven). For each sub-category, we highlight a few exemplary
applications as small white circles. Some applications overlap between the two groups, and this is illustrated by linking them to the relevant
sub-categories in the respective groups.
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FIGURE 26.2

Examples of failures under data shifts in deep learning based FLAIR-T1 MR synthesis. Im-
ages of healthy subjects and those with tumors are shown in green and red (light gray and
dark gray in print version). In (a), the model is only trained on images of healthy subjects
and as a result ends up removing a tumor in the test domain. In (b), the model is trained
only on images of tumor patients and tested on healthy cases, leading to the creation of a
synthetic tumor, which is not present in the original image. Source: [34].

It has been argued that uncertainty quantification provides a powerful framework
to address this challenge [41]. So far, the overwhelming majority of methods in
synthesis (mainly, machine learning based ones but also others) deliver a single pre-
diction, but leave users with no measure of its reliability. The ramifications and the
forms of synthesis failures depend on the specifics of the downstream processing and
the decision-making that consumes the synthesized images. This necessitates quanti-
fying the risks of using synthesized images in a way that is tailored to its clinical end
use. Furthermore, the users may desire to understand the sources from which the risks
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FIGURE 26.3

Examples of instabilities produced by neural networks for under-sampled MRI reconstruc-
tion. In (a), small structured perturbations (in the form of text and symbols) are introduced
(e.g., “CAN YOU SEE IT ♠”). In (c) and (d), the reconstructions from MRI Variational
Network (MRI-VN) [37] and state-of-the-art classical methods (i.e., compressed sensing
[38–40]) are shown, respectively. MRI-VN is moderately unstable with respect to structural
changes; such instability coincides with the inability to reconstruct details. Note that MRI-
VN has not been trained with images containing any of the letters or symbols used in the
perturbation. Source: [35].

originate (e.g., the test case is under-represented in the training data vs. inherently
ambiguous), so they can act accordingly to mitigate them. Uncertainty quantification
allows us to formalize these practical challenges in the language of probability theory
and to design potential solutions [42,43]. While the wider machine learning commu-
nity has begun to realize the importance of quantifying uncertainty information [44],
this topic has yet to receive the attention it deserves in image synthesis.

The scope of this chapter is to identify current and future challenges in uncertainty
quantification for medical image synthesis along with possible uses in clinical prac-
tice. Throughout the chapter, although primarily focusing on uncertainty quantifica-
tion in deep learning methods, we survey “classical” approaches (i.e., approaches
developed prior to the advent of deep learning), because many of the concepts we
cover are generally applicable to machine learning approaches. We also discuss mod-
eling challenges from the standpoint of machine learning developers. We discuss
whether uncertainty information should be directly communicated to clinicians or
used as a part of the background safety mechanism within the system. Furthermore,
we query to what extent risk management should depend on the specific synthesis
task of interest and its downstream usage in practice. For example, the diagnosis of
different conditions and different deployment environments (e.g., A&E vs standard
practice) may require synthesized images of different quality and hence different de-
grees of reliability.

In this chapter, we provide the first comprehensive review of uncertainty quan-
tification in medical image synthesis. Moreover, we highlight the main research gaps
and foreseeable challenges. The rest of the chapter is structured as follows. In Sec-
tion 26.2 we provide background on uncertainty quantification. In Section 26.3 we
discuss traditional and deep learning approaches for handling uncertainty. Lastly, in
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Section 26.4 we discuss the technical (and practical) challenges associated with quan-
tifying uncertainty, and the obstacles in translating uncertainty-aware methods into
clinical practice.

26.2 Troublesome uncertainty landscape
Uncertainty quantification has recently begun to attract attention in the medical
imaging community [45–49].2 To date, however, the subject remains severely under-
explored for image synthesis applications.3

This section is structured as follows. In Section 26.2.1 we attempt to answer
the question “What is uncertainty quantification?”, and we present a taxonomy of
uncertainty with an emphasis on the distinction between aleatoric and epistemic
uncertainty. In Section 26.2.2 we motivate why we should care about quantifying
uncertainty. Lastly in Section 26.2.3 we propose a case study where we exemplify
how an existing synthesis framework may benefit from uncertainty quantification.

26.2.1 What is uncertainty quantification?
Imagine you were given a machine learning model F(·; θ) that takes a query in-
stance xq (e.g., an input magnetic resonance (MR) image) and makes a prediction
ŷq = F(xq; θ) about a target image of interest yq (e.g., a computed tomography (CT)
image), where yq and ŷq denote the target output variable and its estimate from the
model F(·; θ), respectively. The model F(·; θ) is parametrized by a (possibly high-
dimensional) vector θ , which is optimized based on the training dataset consisting
of N pairs of inputs and target outputs D := {(xi, yi)}Ni=1. In a supervised learning
setting, we assume the existence of some θ that controls the dependence between the
input and output p(D|θ) (i.e., the likelihood of θ ). Synthesizing a CT from an MR
image is a problem of predictive inference: given a set of data D and a query xq , what
is the associated prediction ŷq? In the framework of probabilistic machine learning,
inference involves several learning and approximation steps, and all the errors and
uncertainties incurred at these steps contribute to the uncertainty of the output ŷq .
Below, we present a taxonomy of different uncertainty types and explain their differ-
ences and interrelations (see Table 26.1).

Predictive uncertainty is a measure describing the degree of ambiguity (or con-
fidence) in the model’s output ŷq for a given input xq . For example, we may report
the 95% confidence interval for each pixel (i.e., capturing two standard deviations on

2 See Abdar et al. [44] for a comprehensive review on uncertainty-aware methods in deep learning; med-
ical image classification, segmentation and registration are also thoroughly discussed.
3 Although under-explored for image synthesis applications, uncertainty quantification is an important,
ongoing research topic within the machine learning community, and, for instance, just recently comple-
mentary yet alternative formal definitions (to the ones we provide in this chapter) on model bias, model
variance, and aleatoric and epistemic uncertainty have been proposed [50].
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Table 26.1 Uncertainty types and their distributional forms. Model M denotes
one element from model class M, e.g., a neural network F(·; θ) with the associ-
ated parameter vector θ .

Uncertainty Type Distributional Form Ambiguity in
Predictive p(ŷ|x) the model’s output
Aleatoric p(y|x) the data formation process

Epistemic – Structural p(M|D) the model specification
Epistemic – Parametric p(θ |D) the estimation of the model parameters

either side of the mean estimate, under the Gaussian assumption) along with the syn-
thetic image as a measure of predictive uncertainty. The confidence interval can then
be used to assess the variability of the prediction (e.g., the smaller the interval, the
more certain the model is about the prediction). Predictive uncertainty is represented
in, what is known as, the (posterior) predictive distribution p(ŷq |xq).

One is often interested not only in quantifying predictive uncertainty, but also in
understanding its sources [51,52], which are useful in identifying the factors from
which predictive uncertainty arises. In medical image synthesis, Tanno et al. [53]
have shown how disentangling the constituents of uncertainty yields a form of inter-
pretation of predictive uncertainty. The sources of predictive uncertainty are typically
further categorized into aleatoric and epistemic uncertainty [54–58].

Aleatoric uncertainty – from the Latin word alea meaning a die – refers to the
uncertainty inherent to a problem or an experimental setup that cannot be reduced
by additional physical or experimental knowledge [59]. It is also referred to as data,
intrinsic or irreducible uncertainty in collected measurements caused by the presence
of stochasticity (e.g., measurement noise [60], data transmission and storage errors).
For instance, when synthesizing CTs from MR images, aleatoric uncertainty stems
from the fact that there are multiple plausible CT solutions for a single MR image.
Uncertainty of aleatoric nature is summarized by the underlying conditional distri-
bution p(yq |xq) of the task, which describes the inherent stochasticity in the system
output yq for the given input xq . Such uncertainty is irreducible by collecting more
data under experimental settings. If we wish to reduce aleatoric uncertainty (e.g., the
noise in the acquired data), we might have to switch to a different acquisition proto-
col.

Epistemic uncertainty – from Ancient Greek “επιστημη” meaning knowledge
– refers to the uncertainty arising from a lack of knowledge or statistical evidence
(i.e., the “epistemic” state of the decision maker). It is often further decomposed into
two sources, namely structural and parametric uncertainty.

Structural uncertainty (or model inadequacy) refers to the uncertainty about
whether the model is structurally correct. It is also referred to as model specifica-
tion uncertainty or architecture uncertainty [61]. In fact, we might even be uncertain
about whether we have chosen the correct model class in the first place. Perhaps, the
current model class does not explain the data well, and if it is inadequate, we may
need to construct a different one. It is expressed as the plausibility of the true target
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process to lie in the specified model class M. It is thus described by a distribution
p(θ ∈ M|D) which quantifies how probable it is that model M (e.g., a neural network
F(·; θ) with the parameter vector θ ) is within the model class M, given the data D.
Model uncertainty is strictly related to multi-model inference [62], which subsumes
Bayesian model comparison, selection and averaging, as there may exist a multitude
of model classes that explain the data equally well. Is linear regression appropriate?
Or a neural network? If the latter, how many layers should it have? In medical im-
age synthesis, we often assume that the hypothesis space 	 is correctly specified and
neglect the risk of model misspecification.

Parametric uncertainty denotes the uncertainty related to the estimation of the
model parameters under a given model specification, assuming that the form of the
model faithfully captures reality. Consider a scenario in which we choose a complex
model (with ≈ 60 million parameters) but we lack a sufficient amount of training
data (as is often the case in medical image synthesis) to train our model on. In this
case, we will likely struggle to constrain the model’s parameters. Out of all the “func-
tions” our model can represent, which one should we choose? Parametric uncertainty
is described by the posterior distribution p(θ |D) over the unknown parameters θ of
the specified model F(·; θ), given the data D. The more “peaked” p(θ |D) is (i.e., the
more concentrated the probability mass is in a small region in 	), the less uncer-
tain the decision maker should be. In other words, high parametric uncertainty arises
when the predictions obtained from several “plausible” parameter settings disagree
the most.

Many technical and practical problems with uncertainty quantification boil down
to estimating these distributions in various settings. For complex models such as neu-
ral networks, these distributions are mostly intractable, necessitating the development
of efficient and effective approximations. In medical imaging synthesis, the “ground
truth” for these distributions of interest, p(ŷ|xq), p(y|xq), p(θ |D), and p(M|D) are
often not explicitly available, rendering the exact evaluation of uncertainty estimation
very challenging [63]. We shall describe efficient strategies for tractable approxima-
tions in Section 26.3.

26.2.2 Why should we care?
Uncertainty quantification offers a principled and consistent framework that provides
reliability measures of the model’s output, which potentially can shed valuable insight
for downstream applications. In this regard, we argue that uncertainty quantifica-
tion could assist the translation of medical image synthesis technologies into clinical
practice while improving clinicians’ trust [64]. Below we present four use cases of
estimated uncertainty information in a variety of settings: quality check, propagating
uncertainty, shedding insight and improving predictive performance. We also present
the safety implications of deploying machine learning based image synthesis appli-
cations in clinical practice.
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Quality check
Taking contrast enhancement of CTs as an exemplary synthesis application, one may
be interested in whether the model generalizes in new environments. One may want
to asses if the model can reliably enhance the CTs of all relevant sub-populations
that are not well-represented in the training data. Or, one may want to know how the
model would behave if the acquisition parameters of the CT scanner or even its type
were to change in the deployment site due to some operational reasons. How would
the model perform if the CTs of patients with rare conditions or diseases were to be
taken? Ideally, we would collect enough validation data in all these possible scenar-
ios and assess the model’s performance. Such an approach, however, is impractical.
To make matters worse, several works have shown that deep learning models often
overestimate their confidence in the synthesis process. First, Cardoso et al. [4] warn
about the “risks” of the model being overconfident, and possibly propagating large
errors to downstream analysis. Then, Cohen et al. [34] and Antun et al. [35] warn
about the dangers of machine learning models hallucinating image features, and ad-
vocate the need for a quality check for image-to-image translation and MR image
reconstruction.

To address these questions, we can look at recent works. Tanno et al. [53] have
suggested that predictive uncertainty, if quantified correctly, provides a surrogate per-
formance metric that could reliably inform the clinicians when not to trust the model’s
predictions. They propose a Bayesian image quality transfer via convolutional neu-
ral networks (CNNs) [65] and demonstrate the usefulness of uncertainty modeling
by measuring the deviation from the ground truth on standard metrics. The standard
deviation map highly correlates with reconstruction errors, which shows their poten-
tial as a surrogate measure of accuracy. More recently, Tanno et al. [66] show that
predictive uncertainty can be used to define a binary classifier, discriminating “risky”
predictions from the “safe” ones. In a different synthesis task, Reinhold et al. [67]
propose a Bayesian deep learning method that learns how to translate a CT into an
MR image and to quantify uncertainty, which is then used as a proxy for anomaly de-
tection. On the basis that high pixel-wise uncertainty occurs in pathological regions of
the synthetic CT, Reinhold et al. [68] use uncertainty quantification for unsupervised
anomaly segmentation. Klaser et al. [69] propose a novel multi-resolution cascade
3D network for end-to-end full-body MR to CT synthesis yet include uncertainty
quantification as a measure of safety. Lastly, Nair et al. [46,70] investigate several
uncertainty metrics for quality control in lesion segmentation of multiple sclerosis.

Propagating uncertainty
Clinical researchers may use predictive uncertainty in downstream analysis, or in-
clude it in the pipeline of medical image analysis, which generally comprises a
sequence of inferential tasks (e.g., synthesis, registration, and segmentation). The
uncertainty quantified at the image level is passed to subsequent tasks in the form
of an uncertainty map (e.g., pixel-wise variance). Recent works have explored this
prospective use. Tanno et al. [53] propagate uncertainty into downstream quantities
in the context of diffusion MRI super-resolution, by computing the expectation and
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variance of mean diffusivity and fractional anisotropy with respect to the predictive
distribution. Mehta et al. [71] show how the performance of a downstream task in a
medical image analysis pipeline can be improved if uncertainty estimates are propa-
gated: the output of each module (including the associated uncertainty) is used as an
input to the subsequent one across cascaded inferential tasks. The paper studies sev-
eral medical image pipelines, each of which cascades two different inferential tasks
(e.g., two-stage MRI synthesis and brain tumor segmentation). Experimental results
indicate that propagating the synthesized image along with its associated uncertainty
map to the downstream tumor segmentation network improves the downstream per-
formance in comparison to only propagating the synthesized image.

Shedding insight on sources of errors
In a scenario where the synthesis error is consistently high on certain image struc-
tures, decomposing predictive uncertainty into aleatoric and epistemic uncertainty
provides high-level “explanations” for a model’s behavior. For instance, such a de-
composition allows quantifying how much uncertainty arises from (i) the inherent
difficulty to reconstruct image structures (i.e., uncertainty of aleatoric nature); (ii) the
unfamiliarity of such image structures due to their limited representation in the train-
ing data (i.e., uncertainty of epistemic nature). If the epistemic uncertainty is high
but the aleatoric one is low, this indicates that collecting more training data would be
beneficial. On the contrary, if the epistemic uncertainty is low and the aleatoric one
is high, then we need to regard such errors as inevitable, and abstain from predictions
to ensure safety or account for errors appropriately in subsequent analysis. Data-
driven approaches for uncertainty quantification also present an additional technical
challenge: the selection and collection of the training data and the evaluation of its
completeness and accuracy. Disentangling the constituents of predictive uncertainty
may suggest how to collect the training data, and the extent to which it is informa-
tive and exhaustive. Tanno et al. [66] show that the decomposition of the effects of
aleatoric and epistemic uncertainty in the predictive uncertainty provides additional
explanations of the performance of the considered methods.

Improving predictive performance
Bayesian approaches to machine learning models offer a number of theoretical as
well as practical advantages. They provide a potential solution to over-fitting, and a
principled and automatic way of selecting hyper-parameters [63,72,73]. Many tech-
niques of regularization arise in a natural way in the Bayesian framework as the
maximum a posteriori (MAP) estimator of certain posterior probability density func-
tions. The need for regularization is compelling in the context of deep learning based
techniques, where nearly all models are severely over-parameterized, due to a lack
of abundant high-quality training samples. Bayesian approaches also deliver quan-
tifiable estimates of uncertainty of the model parameters and predictions as well as
quantitative comparisons between predictions obtained by alternative models (e.g.,
different network architectures) within the framework of model selection (e.g., using
Bayes factor [74]). Furthermore, these approaches enable developing “optimal” es-
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timators with respect to suitable Bayesian risks within the Bayesian decision theory
framework [75].

In order to fully realize these advantages, there remain computational challenges,
which we shall discuss in detail in Section 26.3.

26.2.3 Uncertainty quantification in action
Lastly, we would like to end this section by illustrating how uncertainty could be
used in image synthesis applications. In fact, there are many scenarios in which un-
certainty quantification could be useful to clinicians. Here, we illustrate how positron
emission tomography (PET)/MR image reconstruction may benefit from uncertainty-
aware attenuation correction in PET. Clinical researchers have improved PET/MR
reconstruction by generating a “pseudo-CT” and deriving the attenuation coefficients
[3], which, in turn, play a substantial role in PET reconstruction. The synthetic infor-
mation is implicitly used within the reconstruction pipeline to inform the attenuation
coefficients, and it is also customary for nuclear medicine physicians to visualize the
pseudo-CT for PET/MRI (CT in case of PET/CT) mainly to check the movement
artefact. In theory, one should check the plausibility of pseudo-CTs as obvious ar-
tifacts (e.g., air in the middle of the brain because of a segmentation problem) can
easily be detected. This is, however, rarely done in practice. What happens if the ap-
proach is unable to correctly synthesize a CT from the MR image? This might be the
case for patients that have evident bone defects (e.g., low or high bone density). For
such an “outlier” patient, a notion of uncertainty over the pseudo-CT could be useful
as it would provide a background defensive mechanism that informs the clinician not
to use the pseudo-CT and attenuation maps as “too risky” to trust for PET reconstruc-
tion. We may want our automated system to abstain from using the pseudo-CT and
request the assistance of a clinician when the uncertainty is above a certain threshold.

26.3 Tools for modeling uncertainty
In this section, we delve into the details of practical computational techniques for
handling uncertainties within the Bayesian framework [76,77]. The main idea is as
follows: all the quantities which appear in synthesis tasks are modeled probabilisti-
cally as random variables with corresponding probability distributions (e.g., density
for continuous random variables). Within the Bayesian framework, there are two fun-
damental building blocks, namely the likelihood (of the training data D) and the prior
distribution. The training data set D consists either of a set of available measurements
y in data-to-image synthesis or a set of N pairs (xi, yi) in the context of supervised
learning. The prior distribution p(θ) of the parameter θ specifies the prior knowledge
we have before collecting the measurements. In the context of standard data-to-image
synthesis, θ is the target image and p(θ) encodes the a priori knowledge we have
about the sought-for image, whereas in supervised learning, we seek to learn the
posterior distribution p(θ |D) over the parameters θ of the model F(·; θ). Learning
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consists of updating the prior distribution p(θ) to the posterior distribution p(θ |D)

defined as

p(θ |D) = p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

, (26.1)

where the likelihood function of parameters θ , p(D|θ), is the probability of the given
training data set D given θ . The posterior distribution p(θ |D) over θ is inferred by
deductively updating the prior knowledge p(θ) we had, given the data D we observed
[78,79]. Note that, in “machine learning parlance,” we usually denote the input by x

and the target output by y, whereas in the inverse problem community, y denotes the
observations (i.e., measurements that have undergone through a corruption process)
and x is the image to be reconstructed (and θ , for instance, is the parameter vector of
the neural network). Here we will follow the machine learning notation.

To represent uncertainty about a prediction ŷq , all possible configurations of θ are
considered, with each prediction being weighed by its posterior probability p(θ |D).
We compute the posterior predictive distribution p(ŷq |xq) as

p(ŷq |xq)︸ ︷︷ ︸
Predictive
uncertainty

=
∫

p(ŷq |xq, θ)︸ ︷︷ ︸
Aleatoric

uncertainty

p(θ |D)︸ ︷︷ ︸
Epistemic
uncertainty

dθ, (26.2)

which captures both aleatoric and epistemic uncertainty. The final prediction is
obtained by Bayesian model averaging; or, if stated differently, is made through
Bayesian marginalization as the predictive distribution of interest no longer condi-
tions on θ . Intuitively, we can think of Eq. (26.2) as a weighted average (i.e., the
outcome of a reconstructed image) of many different hypotheses by their plausibility
given data—we would like to use every possible setting of θ—rather than a single
one. In the supervised learning setting, the challenges in computing the posterior
predictive distribution p(ŷq |xq) are two-fold: (i) estimating the posterior distribution
p(θ |D); (ii) integrating out θ . Since Bayesian model averaging is often too hard, we
either tend to approximate the integral with a simple Monte Carlo (MC) approxima-
tion

p(ŷq |xq) ≈ 1

T

T∑
t=1

p(ŷq |xq, θ̂ t ), with θ̂ t ∼ p(θ |D),

or we adopt only the single prediction with the highest posterior distribution, θ∗ =
argmaxp(θ |D). This estimate is commonly known as the MAP estimate and is com-
putationally more tractable. Even though MAP involves the posterior distribution
p(θ |D) and looks like an application of the Bayes’ rule, it is not properly Bayesian.
In fact, it would put everything on one single hypothesis, that is, on a single setting
of the parameters F(·; θmap). Accordingly, Eq. (26.2) would be computed by using an
approximate posterior distribution p(θ |D) ≈ δ(θ = θmap), where δ is a Dirac delta
distribution with all its mass at θmap, with the likelihood being p(ŷq |xq, θmap). The
difference between these two approaches relies on the posterior distribution p(θ |D),
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but most importantly on how “sharp” it is. In fact, there would be almost no differ-
ence if the posterior distribution happened to be sharply peaked, and the likelihood
p(ŷq |xq, θ) did not vary much in the region where the posterior distribution places
its mass. A Dirac delta may then be a reasonable approximation of the posterior dis-
tribution in Eq. (26.2).4 If this is not the case, averaging the predictions of many high
performing models θ̂ t (e.g., neural networks) that “disagree” for some input cases
can lead to a significant improvement in accuracy [82,81].

26.3.1 Approximation techniques
Although the posterior distribution p(θ |D) gives a complete probabilistic solution
to the synthesis task—it combines both the prior knowledge with the given data—a
closed form expression for p(θ |D) is often unavailable in medical image synthe-
sis. There are several forms of intractable posterior distributions: (i) the normalizing
constant is intractable (i.e., “analytically” intractable); (ii) the posterior distribution is
intractable due to an intractable likelihood (e.g., the data generating process being too
complex due to poorly understood physics). Generally, summary statistics (e.g., mean
and variance or correlation) are sought. However, these quantities require computing
high-dimensional integrals, which are computationally infeasible for most synthesis
tasks. Thus, it is imperative to employ numerical procedures to effectively explore
the posterior distribution p(θ |D). These can roughly be divided into two groups:
MC-type methods and approximate inference techniques. MC-type methods include
Markov chain Monte Carlo (MCMC), which constructs a Markov chain whose sta-
tionary distribution is the posterior distribution, and which uses ergodic averages to
approximate the statistics of interest, and sequential MC, which constructs a finite
sequence of importance samplers targeting a sequence of distributions with the last
being the posterior distribution.

Approximate inference methods include the Laplace approximation using a local
Gaussian approximation constructed at the MAP, variational inference (VI) framing
the approximation of the posterior distribution as optimizing a lower bound on the
evidence with respect to a tractable family of simple distributions (commonly re-
ferred to as a variational distribution), and expectation propagation, which iteratively
leverages the factorization structure of the target distribution.

Before we proceed further, it is useful to recall that the end goal is to accurately
approximate the posterior predictive distribution in Eq. (26.2). To do so, it is impor-
tant to have an accurate approximation of the posterior distribution in the regions that
would contribute most to the Bayesian model averaging integral in Eq. (26.2). Let
us imagine one samples two different settings of parameters of the network F(·; θ),
namely θ̂1 and θ̂2, but both give rise to similar functions F(·; θ̂1) and F(·; θ̂2). In this
case, the second setting of parameters θ̂2 would not contribute much to estimating

4 However, this is hardly the case for neural networks, which are highly under-specified by the available
data [80,81].
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the integral in Eq. (26.2), and we should seek functional diversity for a good approx-
imation of Eq. (26.2) [83].

Monte Carlo methods
In MC-type methods, one generates samples from p(θ |D), which are then used to
produce representative reconstructions or to compute summary statistics. Directly
generating samples is generally very challenging. MCMC [84] methods (e.g., the
Metropolis–Hastings algorithm or the Gibbs algorithm) generate a Markov chain
whose stationary distribution is the target distribution, and is asymptotically exact.
These methods can approximate the target distribution arbitrarily well, provided that
one can run the chain for sufficiently long, and thus have been established as the
gold standard for exploring the posterior state space. In practice, these methods are
often easy to implement, but their efficiency relies heavily on various algorithmic pa-
rameters (e.g., proposal distribution and step-size). To make matters even worse, the
scalability with parameter dimensionality is often not very favorable and the conver-
gence diagnosis remains largely an art rather than a science.

Consequently, despite their impressive progress in recent years (e.g., Hamilto-
nian Monte Carlo [85]), the use of MC methods in the context of medical image
synthesis (including image reconstruction) remains fairly limited. However, there are
some exceptions. Pedemonte et al. [86] use a recent Riemann manifold MCMC sam-
pling scheme [85] to sample the posterior distribution of emission rates given the
photon counts for PET. The method obtains uncertainty information from all the
processes involved in the reconstruction algorithm (i.e., the observed data, the mea-
surement noise and the background signal, the reconstruction process itself, and also
possibly the hyper-parameters). Moreover, the tightening of the posterior distribu-
tion is also used as a reliability indicator for estimating the required patient scan
time. Weir et al. [87] propose an approach for single-photon emission computed to-
mography (SPECT) that samples the joint posterior distribution of the image and
hyper-parameters using a Gibbs prior and the Metropolis–Hastings sampler on simu-
lated and phantom data. Similarly, Barat et al. [88] propose a Gibbs sampler for PET
with a nonparametric Dirichlet process mixture prior. However, even for medium-
size medical image reconstruction, exploring the posterior distribution with MCMC
type methods can incur a prohibitively high computational expense, and thus is not
practically feasible. As a rule of thumb, the higher the dimensionality, the more com-
plex the posterior distribution, and the slower the sampling procedure converges. For
PET, Filipovic et al. [89] develop a Gibbs type sampler formed from a distance-driven
Chinese restaurant process (for clustering). Nonetheless, the procedure remains ex-
pensive: “The computation time was 4 days for RCP-GS (30 runs × 250 sampler
iterations), compared to 1 h 20 min for MR-MAP and 50 min for OSEM (8 iterations
× 27 subsets)” [89].

Approximate inference schemes
Deterministic approximate inference techniques encompass a large variety of meth-
ods such as the Laplace approximation [90], VI [91–93] (using mean-field approx-
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imation [94], or the variational Gaussian approximation [95,96] and more recently
stochastic VI [97]), and expectation propagation [98].

The Laplace approximation is a classical approach to approximate the posterior
distribution. It constructs a Gaussian distribution based on the second-order Taylor
expansion of the log-posterior logp(θ |D) around the MAP estimate θ∗,

p(θ |D) ∝ exp

{
−1

2

(
θ − θ∗)�

H(θ∗)
(
θ − θ∗)} , (26.3)

where H(θ∗) = −∇2
θ logp(θ |D)|θ=θ∗ denotes the Hessian of the (negative log) pos-

terior distribution estimated at the MAP estimate θ∗. This approach requires good
differentiability of the negative log-posterior distribution, and it is thus not directly
suitable for non-smooth priors (e.g., sparsity or total variation) which commonly
appear in image reconstruction5; but most importantly, computing the full Hessian
H(θ) is computationally demanding and memory-wise infeasible, unless further fast
approximations (e.g., diagonal + local rank, Kronecker or sparse (inverse) covari-
ance) are employed. The low-rank assumption is reasonable for severely ill-posed
imaging problems. It is also worth noting that often more accurate approximations
can be obtained using the integrated nested Laplace approximation [100]. Despite its
simplicity, it has barely been employed in medical image restoration or synthesis.

Most VI techniques were developed within the machine learning community,
where the aforementioned computational challenge is widely acknowledged. VI is
often based on approximately minimizing the Kullback–Leibler (KL) divergence6

[101] between the target distribution and the approximate surrogate one. The diver-
gence KL from q to p is defined by

KL(q‖p) =
∫

q(x) log
q(x)

p(x)
dx. (26.4)

VI then searches for an approximating distribution q∗
ψ(θ) parametrized by ψ within

an admissible family Q by minimizing the KL divergence,

q∗
ψ(θ) := argmin

qψ∈Q
KL

(
qψ(θ)‖p(θ |D)

)
. (26.5)

Introducing a prior distribution p(θ) and applying the Bayes rule allows us to rewrite
the optimization of Eq. (26.5) as the maximization of the Evidence Lower BOund
(ELBO) with respect to the variational parameters defining qψ(θ),

LVI :=
∫

qψ(θ) logp(D|θ)dθ −
∫

qψ(θ) log
qψ(θ)

p(θ)
dθ ≤ logp(D). (26.6)

5 Various smoothing (e.g., Huber) can be used for non-smooth priors, but it can also significantly hinder
the approximation; see [99] an illustration with the anisotropic total variation prior.
6 Note that the divergence is asymmetric and does not satisfy the triangle inequality, but it vanishes if and
only if p equals to q almost everywhere.
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The maximizing functional LVI is a lower bound to the log-evidence (i.e., the
normalizing constant or marginal log-likelihood) p(D). Note that the ELBO plus
KL

(
qψ(θ)‖p(θ |D)

)
equals the marginal log-likelihood p(D), which is constant with

respect to the variational parameters ψ .
The computational tractability of VI is achieved by imposing suitable assumptions

on the approximating family Q, for instance, a fully-factorized (also known as mean-
field) Gaussian QFFG defined by

QFFG =
{
q(θ) =

∏
i

N (θi;μi,σ
2
i )

}
,

where N (θi;μi,σ
2
i ) denotes a Gaussian distribution for the component θi with mean

μi and variance σ 2
i . The parameters μi and σ 2

i are variational parameters that have
to be optimized. Then maximization is often carried out by coordinate ascent type
schemes, or stochastic gradient type algorithms [97]. The latter requires an MC es-
timate of the gradient, which often has to be done carefully in order to ensure low
bias and low variance. It is worth noting that in a different vein, suitable averaging
of the stochastic gradient iterates can also be interpreted as approximate inference
[102,103], though the covariance estimate may differ in shape.

In contrast, expectation propagation [98] minimizes the KL divergence defined
as KL(p‖q), which mathematically amounts to moment matching, and its practical-
ity relies on a factorized form of the posterior distribution and a possible reduction
to low-dimensional (often still delicate) numerical integration. The stability of the
implementation relies heavily on the accuracy of the quadrature rules, and an inaccu-
rate quadrature can cause the nonconvergence of the iteration. In this regard, Zhang
et al. [99] develop an approximate Bayesian inference technique based on expecta-
tion propagation for PET reconstruction (with the anisotropic total variation prior),
where the delicate issue of numerical integration is studied in depth and the approach
is showcased on medium-size simulated phantom data.

Besides these established approximate inference techniques, there are several oth-
ers. One notable recent example is Stein variational gradient descent [104], which
also performs moment matching but it does so implicitly [105]. Compared with
MCMC type methods, deterministic approximations are often computationally more
efficient, but may be limited in accuracy (and often with little theoretical understand-
ing [106]), yet they remain expensive for truly large-scale problems arising in medical
imaging, especially in the presence of strong correlation between different pixels.

More recently, attention has also been paid to blending start-of-the-art optimiza-
tion algorithms with uncertainty quantification. For example, Repetti et al. [107] pro-
pose a method to analyze the confidence in specific structures in MAP estimates using
Bayesian hypothesis testing. The method holds potential for large-scale problems, but
remains to be evaluated clinically. In sum, approaches, which aim to quantify uncer-
tainties, are mathematically principled, but there remain computational challenges;
various approximations have been developed to address these challenges but a com-
plete mathematical theory of the mathematical-statistical properties of these methods
is yet to emerge and their potential in medical image analysis is to be evaluated.
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FIGURE 26.4

Scalable approximate inference methods for Bayesian neural networks.

26.3.2 Probabilistic deep learning
With the advent of deep learning, uncertainty quantification has resurfaced as an im-
portant framework. In medical image synthesis, Bayesian deep learning can provide
the information about uncertainty associated with each prediction [108]. Below, we
review the basics of Bayesian neural networks (BNNs), which holds great potential
yet remains relatively under-explored in the image synthesis community. We also
discuss methods for disentangling predictive uncertainty into the components associ-
ated with aleatoric and parametric uncertainty, and briefly mention several alternative
approximations. The aforementioned computational challenges are more pronounced
in deep neural networks due to the high dimensionality of the parameter space and
high degree of nonlinearity. In Fig. 26.4, we provide a diagram that summarizes dif-
ferent approximate inference schemes, which have been developed with scalability
constraints in mind.

Bayesian neural networks
BNNs place a probability distribution on the parameters θ (which are now treated
as random variables) to encode the uncertainties associated with the prediction
[109–111]. We consider the posterior distribution over all possible settings of the
model parameters given the observed data. Such probability density encapsulates
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parametric uncertainty, and its spread of mass signifies the ambiguity in selecting ap-
propriate parameters. In recent years, there have been significant efforts to character-
ize and approximate the posterior distribution p(θ |D) [112–114], which, in practice,
is intractable due to the difficult-to-compute normalizing constant. It is worth noting
that many approximate inference algorithms share the same approximating family Q.
For instance, VI, the diagonal Laplace approximation [115], probabilistic backprop-
agation [113], stochastic expectation propagation [116], black-box alpha divergence
minimization [117], Rényi divergence VI [118], natural gradient VI [119], and func-
tional variational BNNs [120] all use a fully-factorized Gaussian family QFFG, which
itself is largely motivated by computational considerations.

We only review the three most popular schemes used in image synthesis, that is,
Laplace approximation, VI, and Monte Carlo dropout (MCDO), and omit to review
MCMC approaches to BNNs [121–124], which remain computationally inefficient
due to the evaluation of a large ensemble of models for the exploration of the posterior
distribution. We also do not review methods that construct Gaussian approximations
to the posterior distribution from a few iterates along the optimization trajectory
obtained by stochastic gradient descent methods of a deterministic neural network
[103]. To the best of our knowledge, these methods have yet to be applied to medical
image synthesis.

Laplace approximation
We can use Laplace’s method to approximate p(θ |D). The canonical form of (su-
pervised) deep learning is that of empirical risk minimization, F(·; θ) is trained to
minimize the following (regularized) empirical risk:

θ∗ ∈ argmin
θ

{
L :=

N∑
i=1

�(yi, ŷ; θ) + r(θ)

}
, (26.7)

with �(yi, ŷ; θ) = − logp(yi |xi, θ) and r(θ) = − logp(θ). Hence, exp(−L) amounts
to an unnormalized posterior. Upon normalization, we obtain

p(θ |D) = Z−1p(D|θ)p(θ) = Z−1 exp (−L) , (26.8)

with Z := ∫
p(D|θ)p(θ)dθ . Laplace’s method employs a second-order expansion of

L around θ∗ to construct a Gaussian approximation to p(θ |D):

L ≈ L|θ=θ∗ + 1
2

(
θ − θ∗)� ∇2

θL|θ=θ∗
(
θ − θ∗) , (26.9)

since the first-order derivative ∇θL(θ) vanishes at θ∗. Then we can identify the
Laplace approximation as

p(θ |D) ≈ q(θ) := N (θ; θ∗,(θ)), with (θ) = −
[
∇2

θL|θ=θ∗
]−1

. (26.10)

Hence, to obtain q(θ), we first need to find a minimizer θ∗ of L (i.e., perform standard
deep learning) and then to compute the inverse of the Hessian matrix ∇2

θL at θ∗. Thus



618 CHAPTER 26 Uncertainty quantification in medical image synthesis

the construction is post-hoc to a pretrained network. To compute (θ), we have to
compute ∇2

θL|θ=θ∗ in Eq. (26.9). The prior term is usually trivial to compute, but the
likelihood is more involved, which is given by

∇2
θ logp(ŷ|x, θ) = H(x; θ)�r(ŷ, θ) − J (x; θ)��(ŷ; θ)J (x; θ), (26.11)

where H(x; θ) and J (x; θ) are the Hessian and Jacobian of the log-likelihood per-
data point (expressed through the Hessian and Jacobian of F(·; θ)); the residual
r(ŷ, θ) = ∇F logp(ŷ|x, θ), and �(ŷ, θ) = −∇2

F logp(ŷ|x, θ) is the per-input noise.
The network Hessian is infeasible to construct in practice, and instead the generalized
Gauss–Newton (GGN) approximation is commonly used [125,126]

qGGN(θ) := N
(

θ; θ∗,
(
J (x; θ)��(ŷ; θ)J (x; θ) + S−1

0

)−1
)

, (26.12)

where S0 denotes the Hessian of the prior r(θ). The approximation is obtained by
assuming H(x; θ)�r(ŷ, θ) = 0. To justify this, there are two independently sufficient
conditions [127]: (i) the residual term vanishes for all data-points, which is true if
F(·; θ) is a perfect predictor; (ii) the Hessian term vanishes, which is true for linear
networks, and can be enforced by linearization. In practice, the GGN approximation
is further approximated (e.g., diagonal or block diagonal).

Note that the posterior predictive distribution is still intractable due to the non-
linearity of the neural network, and for the Laplace approximation, the most general
approximation (i.e., MC integration) can perform poorly [128]. Immer et al. [129] at-
tribute it to the inconsistencies between the Hessian approximation and the predictive
one, and suggest to use a linearized predictive distribution. The linearized network
h(θ) around θ∗ is defined as

h(θ) := F(x; θ∗) + J (x; θ∗)(θ − θ∗). (26.13)

Note that h(θ) is affine linear in the parameters θ , but not the input x. Under a
Gaussian posterior q(θ), the marginal distribution over the network output is again
Gaussian [130], and given by

p(ŷq |h(xq; θ∗),D) ≈
∫

δ(x∗ − h(xq; θ∗))q(θ)dθ (26.14)

= N (x∗;F(xq; θ∗), J (xq; θ∗)(θ)J (xq; θ)�). (26.15)

This approximation has been extensively used, but only for small neural networks
since the per-data point Jacobian is often computationally intractable. Within com-
putational tomography, the Laplace approximation was recently employed for CT
reconstruction (together with a probabilistic version of deep image prior) [131].

Variational inference
VI recasts intractable inference as an optimization problem: we replace marginaliza-
tion with the optimization of Eq. (26.6), which is (unbiasedly) estimated by randomly
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selecting a mini-batch set B of M data-pairs and using T ≥ 1 MC samples (with
θ̂ t ∼ qψ(θ)) [112],7

L̂VI = N

M

∑
i∈B

1

T

T∑
t=1

logp
(
yt
i |xt

i , θ̂
t
)

− KL
(
qψ(θ)‖p(θ)

)
. (26.16)

Currently, the most efficient technique to compute the gradients ∇ψ L̂VI is the so-
called reparametrization trick [132], which employs a deterministic dependence of
the ELBO with respect to ψ to back-propagate. To this end, we rewrite qψ(θ) using a
differentiable transformation θ̂ t = g(ψ, ε̂t ) with ε̂t ∼ p(ε) and p(ε) being an under-
lying, parameter-free distribution (e.g., the standard Gaussian distribution). We can
then use MC integration over p(ε) to evaluate the expectations, yet the value depends
on θ and we can hence propagate gradients through g(·). The reparametrization can
be carried out either explicitly [133,134] or implicitly [135]. Once we obtain q∗

ψ(θ)

by maximizing Eq. (26.16), we perform inference on a new query by approximating
the predictive distribution in Eq. (26.2) as

p(ŷq |xq,D) ≈
∫

p(ŷq |xq, θ)q∗
ψ(θ)dθ := q∗

ψ(ŷq |xq). (26.17)

In practice, we approximate the optimal variational distribution q∗
ψ(yq |xq) with MC

integration

q̂∗
ψ(ŷq |xq) := 1

T

T∑
t=1

p(ŷq |xq, θ̂ t ), with θ̂ t ∼ q∗
ψ(θ). (26.18)

Barbano et al. [136,137] propose a scalable and efficient framework rooted in VI
formalism to jointly quantify aleatoric and epistemic uncertainties in unrolled opti-
mization. The framework is showcased on CT reconstruction with both sparse view
and limited angle data, and the estimated uncertainty is observed to capture the vari-
ability in the reconstructions, caused by the restricted measurement model, and by
missing information, due to limited angle geometry.

Monte Carlo dropout
Gal and Ghahramani [114] propose an MCDO method, which approximates p(θ |D)

with a multiplicative Bernoulli distribution. It defines an approximate posterior dis-
tribution q(θ) over a neural network with weight matrices Wi ∈ R

Ki×Ki−1 and bias
vectors bi ∈R

Ki for each layer by

Wi = Mi · diag
([

zi,j

]Ki

j=1

)
,

zi,j ∼ Bernoulli (pi) for i = 1, . . . ,L, j = 1, . . . ,Ki−1

(26.19)

7 Note that we assume that the KL term can be computed deterministically as a closed form solution
might exist; otherwise it can be estimated using Monte Carlo.
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where probabilities pi and Mi are variational parameters and the binary variable
zi,j = 0 corresponding to the unit j in layer i − 1 are dropped as input to layer i.
The minimization of the variational objective becomes

LMCDO := 1

N

N∑
i=1

‖yi − ŷi‖2
2 + λ

L∑
i=1

(
‖Wi‖2

F + ‖bi‖2
2

)
. (26.20)

MCDO has been interpreted as VI [56]. Although the MCDO objective is not
strictly an ELBO [138], we do sometimes refer to it as such. Analogously, other
stochastic regularization techniques [139–141] can also be reinterpreted as VI.
Schlemper et al. [142] explore the applicability of MCDO to architectures which
are commonly used in medical image synthesis to model uncertainty for accelerated
MR reconstructions. More generally, the majority of the works in medical image syn-
thesis use MCDO to approximate predictive uncertainty [142,53,71]. Indeed, MCDO
is one of the most popular approximate inference schemes for complex deep learning
models like CNNs, or recurrent neural networks (RNNs) [143,144]. Nonetheless, de-
spite the impressive progress of BNN techniques, these technologies remain severely
under-explored within medical image synthesis.

How to measure predictive uncertainty?
Eq. (26.2) gives the mechanism to synthesize medical images and represents the
full information of uncertainty of the imaging task. Here we differentiate metrics
that summarize predictive uncertainty. The total uncertainty of the posterior predic-
tive distribution p(ŷq |xq,D) is commonly measured by its variance V[ŷq |xq ]. See
Fig. 26.5 for results of a CNN model for diffusion MRI, which show the predictions
of mean diffusivity (MD) and fractional anisotropy (FA), and their associated pre-
dictive uncertainty maps. The figure displays high correspondence between the root
mean squared error (RMSE) maps and the predictive uncertainty on both FA and MD
of a test subject, demonstrating the utility of the uncertainty map as a surrogate of
prediction accuracy. It also shows strong correlation between the intensity value of
the prediction and the predictive uncertainty, being in agreement with the observation
that the error map itself correlates strongly with the intensity values.

To elucidate the sources of uncertainty, the total uncertainty can be further de-
composed using the law of total variance as

V[ŷq |xq ] = Vq∗(θ)

[
E(ŷq |xq, θ)

]︸ ︷︷ ︸
�E[ŷq ]

+Eq∗(θ)

[
V(ŷq |xq, θ)

]︸ ︷︷ ︸
�A[ŷq ]

, (26.21)

where E(ŷq |xq, θ) and V(ŷq |xq, θ) are, respectively, the mean and variance of the
prediction ŷq according to p(ŷq |xq, θ). The first term �E[ŷq ] measures epistemic
uncertainty since it ignores any contribution to the variance of ŷq from the stochas-
ticity in the data xq . In contrast, the second term �A[ŷq ] represents the average value
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FIGURE 26.5

Comparison between voxel-wise RMSE and predictive uncertainty maps for FA and MD
computed on a Human Connectome Project test subject (min–max normalized for MD
and FA separately). Low resolution input, ground truth, and the mean of high resolution
predictions are also shown. Source: [66].

of V(ŷq |xq, θ). This term ignores any contribution to the variance of ŷq from θ and
thus models aleatoric uncertainty. The importance of distinguishing between different
forms of uncertainty has recently been recognized in deep learning models [57,53].
We describe one approach in this direction by decomposing the predictive variance
into aleatoric and epistemic components. The epistemic uncertainty (of parametric
nature) can be obtained using BNNs and approximate inference schemes (e.g., VI
or MCDO) thus it is encapsulated in the approximate posterior distribution. Mean-
while, quantifying aleatoric uncertainty can be captured by computing the variance
of the likelihood. This broad class of models, where the variance is a function of the
input, is often termed as input-dependent or heteroscedastic noise models [145,146].
In practice, recent works rely on doubling the network architecture and modeling
the likelihood as a Gaussian distribution with input-dependent varying variance (see
Fig. 26.6), that is, p(ŷq |xq, θ) = N

(
ŷ;Fμ(x; θ1),Fσ (x; θ2)

)
, where Fμ(·; θ1) and

Fσ (·; θ2) refer to the “mean” and “covariance” networks, respectively, with the ap-
proximate posterior distribution being qψ(θ = {(θ1, θ2)}). Note that predictive uncer-
tainty can be also decomposed by using homoscedastic noise models (i.e., constant
variance across all spatial locations), but this approximation is highly unrealistic in
medical image synthesis.

One can estimate the variance of a quantity of interest derived from a synthesized
image and potentially decompose it into aleatoric and epistemic components. Let
f (·) be any reasonably behaved function, which transforms the synthesized image ŷq

into a quantity of interest, and we estimate the variance in the transformed domain
(i.e., V[f (ŷq)|xq ]). If f (·) is an identity map, that is, f (ŷq) = ŷq , Eq. (26.21) can be
approximated using T MC samples:
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FIGURE 26.6

Illustration of a heteroscedastic network with variational dropout [139], with diagonal covariance. The top 3D-ESPCN estimates the mean and
the bottom one estimates the covariance matrix of the likelihood. Variational dropout is applied to feature maps after every convolution, where
Gaussian noise is injected into feature maps Fout = μY + ε  σY , with ε ∼N (0, I ). Source: [66].
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V̂[ŷq |xq ] = 1

T

T∑
t=1

Fμ(xq; θ t
1)F

μ(xq; θ t
1)

� − F̄μ(xq)F̄μ(xq)�︸ ︷︷ ︸
�̂E(ŷq )

+
T∑

i=1

Fσ (xq; θ t
2)︸ ︷︷ ︸

�̂A(ŷq )

,

(26.22)

where F̄μ(xq) = 1

T

∑T
t=1 Fμ(xq; θ t

1) with {(θ t
1, θ

t
2)}Tt=1 ∼ q∗

ψ(θ). If f (·) is “compli-

cated” again, we need to resort to MC sampling. Following Tanno et al. [53], given
{(θ t

1, θ
t
2)}Tt=1 ∼ q∗

ψ(θ) and {f t }Jj=1 ∼ p(ŷq |xq, θ t
1, θ

t
2) we estimate the propagated

epistemic uncertainty �E[f (ŷq)] and propagated aleatoric �A[f (ŷq)] uncertainty
as

�̂E
[
f (ŷq)

] := 1

T

∑
t

(f̄ t )2 −
⎛⎝ 1

(J − 1)T

∑
j,t

f t
j

⎞⎠2

, (26.23)

�̂A
[
f (ŷq)

] := 1

(J − 1)T

∑
j,t

(f t
j )2 − 1

T

∑
t

(f̄ t )2, (26.24)

f̄ t := 1

J

∑
j

f t
j . (26.25)

Due to “double sampling,” these estimators tend to have higher variance than the case
where f (ŷq) = ŷq .

Instead of the variance of the posterior predictive distribution, we can also use its
entropy as a measure of the overall predictive uncertainty [147]. The total uncertainty
of the predictive distribution in Eq. (26.2) can then be quantified as H(ŷq |xq), where
H(·) denotes the differential entropy of a probability distribution. This also allows de-
composing predictive uncertainty into the two forms of uncertainty. The expectation
of H

(
ŷq |xq, θ

)
under q∗

ψ(θ), that is, Eq∗
ψ(θ)[H(ŷq |xq, θ)], can be used to measure

aleatoric uncertainty, and the difference between total and aleatoric uncertainty to
quantify the epistemic uncertainty,

H
[
ŷq |xq

] − Eq∗
ψ(θ)

[
H

(
ŷq |xq, θ

)]:= MI
(
ŷq , θ

)
, (26.26)

which is the mutual information [148] between the posterior distributions of the
model parameters θ and ŷq .

This decomposition allows us to separately quantify aleatoric and epistemic un-
certainties. We give an illustration in Fig. 26.7 for CT reconstructions [137]. It is
observed that in both sparse view and limited angle CT reconstructions, aleatoric
uncertainty appears to dominate, with its overall shape close to the mean (but of a
smaller magnitude). Epistemic uncertainty is localized to certain regions, capturing
artifacts due to limited angle data. Thus, aleatoric and epistemic uncertainties provide
complementary information about the reconstructions, and might provide different
insights into their reliability.
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FIGURE 26.7

The reconstructions for sparse view CT with 32 directions (top) and limited angle with [0, 90◦) (bottom). Source: [137].
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Miscellaneous approximations
Recent deep inferential machinery may also hold potential for the synthesis com-
munity. These techniques also employ deep neural networks but often obtain the
associated uncertainties differently from BNNs. Below we describe the most influ-
ential ones. Adler et al. [149] employ a modified conditional Wasserstein generative
adversarial network [150] to generate a high-dose CT from low-dose counterparts.
However, the approach was only evaluated on simplified settings. Denker et al. [151]
use conditional invertible neural networks which are inferential machinery based on
(conditional) normalizing flow [152,153]. Normalizing flow allows learning expres-
sive conditional densities by maximum likelihood estimation. The authors aim to
learn a conditional density of images from noisy low-dose CT measurements based
on training data obtained from high-dose reconstructions. Tonolini et al. [154] and
Zhang et al. [155] concurrently use a conditional variational autoencoder framework
[132] for solving Bayesian image reconstruction problems. Zhang et al. [155] provide
the theoretical underpinning for approximate posterior inference and demonstrations
on Gaussian and Poisson image denoising. More recently, Tezcan et al. [156] propose
a hybrid approach for under-sampled MRI reconstruction to overcome the curse-
of-dimensionality. The authors introduce a low-dimensional latent space given the
acquisition data in k-space modeled via a variational autoencoder, and then apply
MCMC for the sampling. In a yet slightly different vein, more recently, Edupu-
ganti et al. [157] propose an approach for uncertainty quantification via variational
autoencoders, with uncertainty encoded in the low-dimensional latent variable, and
consistency enforced by minimizing a loss based on the Stein unbiased risk estimator,
and demonstrate the approach on MRI reconstruction.

Finally, an alternative approach to uncertainty quantification is ensembling (i.e.,
bootstrap posteriors), where the variance of the predictions of multiple networks (i.e.,
the ensemble) is used to quantify predictive uncertainty [158]. In a number of settings,
deep ensembles are becoming the gold standard approach for obtaining an accurate
and well-calibrated posterior predictive distribution [159–161]. Within the machine
learning community, the idea that deep ensembles should be regarded as an approx-
imate approach to Bayesian marginalization, instead of a competing (non-Bayesian)
method to Bayesian inference, is emerging [83]. Pearce et al. [162] argue that deep
ensembles perform approximate Bayesian inference, and Gustafsson et al. [163] also
mention that deep ensembles can be regarded as samples from an approximate pos-
terior distribution. Ensemble methods are limited by their computational cost as
multiple neural networks need to be trained independently (using different network
initializations). Furthermore, ensembling neural networks requires even more signif-
icant memory and computational overhead at training and test time. To overcome the
computational bottleneck, Huang et al. [164], among others [80,165,166], propose
faster methods which train ensembles by leveraging different parameter configura-
tions obtained in one single stochastic gradient descent trajectory. However, these
methods come at the cost of reduced predictive performance [160]. There has been
growing interest in uncertainty quantification using deterministic neural networks
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which quantify uncertainty in a single forward pass and therefore have a smaller
memory footprint [167–169].

All these approaches hold great potential for medical image synthesis.

Useful GitHub repositories
Training a Bayesian neural network efficiently is highly nontrivial. The current prac-
tice in machine learning strongly encourages the sharing of relevant implementations,
mostly via GitHub. Instead of listing all existing links on Bayesian neural networks,
we would like to mention a few GitHub repositories that provide PyTorch imple-
mentations of the approximate inference methods that we have discussed, along
with useful Google Colaboratory (Colab) notebooks. We believe that it is preferable
to suggest exemplary implementations that are currently available on GitHub, and
that have been carefully vetted by many members of the machine learning commu-
nity. In this regard, we highly recommend the following GitHub repository https://
github.com/JavierAntoran/Bayesian-Neural-Networks, which has been redacted by
Javier Antorán, a PhD candidate in the Machine Learning Group at Cambridge Uni-
versity. We include this repository for its richness, as well as its excellent readability.
The author also provides Colab notebooks, which can be easily run without any need
for expensive hardware, and allow interested readers to better familiarize themselves
with different models. We would also like to mention Kumar Shridhar’s repository
https://github.com/kumar-shridhar/PyTorch-BayesianCNN, which includes Bayesian
convolutional layers.

26.4 Open challenges
In the previous sections, we have provided a general exposition of several machine
learning techniques available for uncertainty quantification in deep neural networks
with no specific applications in mind. In this final section, we bring out attentions
back to the synthesis applications and aim to elaborate on a number of outstanding
technical and clinical challenges specific to this domain. For instance, we are often
forced to opt for restrictive, yet computationally feasible descriptors of reality over
more truthful but computationally infeasible ones. In Section 26.4.1 we discuss the
implications of the approximations we employ, and identify several possible research
opportunities. In Section 26.4.2 we briefly discuss the additional hurdles we face
when deploying uncertainty quantification technologies within the complex structure
of healthcare, and envision that risk needs to be quantified in the context in which
clinical decisions are formulated.

26.4.1 Can we trust uncertainty?
As is with all kind of quantifications, one is naturally interested in assessing whether
we can actually trust the obtained uncertainty estimates; even more so if several ap-
proximations are taken. So, can we trust uncertainty? To answer the question we first

https://github.com/JavierAntoran/Bayesian-Neural-Networks
https://github.com/JavierAntoran/Bayesian-Neural-Networks
https://github.com/kumar-shridhar/PyTorch-BayesianCNN
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present the sources of “(in)accuracy,” putting a major focus on BNNs. We then argue
that a quantitative evaluation of the uncertainty estimates would address at least (i)
how accurate the estimates are (with respect to the ground-truth posterior distribu-
tion); and (ii) how robust they would be with respect to data distribution shift.

Sources of (in)accuracy
Computational feasibility often imposes restrictive approximations, leading to ap-
proximate likelihood, prior and posterior distributions, and thereby resulting in inac-
curate estimation of aleatoric or epistemic uncertainty. Likelihood misspecification
arises when overly simplistic assumptions are adopted for either the forward map
or the noise statistics. Due to the high-dimensionality of the output, the likelihood
is often assumed to be a Gaussian distribution with a diagonal covariance matrix,
which provides only pixel-wise marginal distributions, and thus is unable to capture
multi-modality of the predictive distribution (i.e., the presence of multiple modes).
Further, the diagonality assumes that the output pixels are statistically independent
given the input. Likewise, the prior distribution p(θ) is prone to misspecification.
This is especially true for data-driven approaches, where the parameters θ in neural
networks (possibly due to severe over-parameterization) often lack a clear semantic
meaning or physical interpretation. This has largely prohibited domain practitioners
from constructing hand-crafted priors. Instead of the result of the attempt to capture
the modeler’s prior knowledge (which is hard to grasp), priors are usually chosen (or
at least in part) to ease computation, and as a result, in neural networks, one often
contents with simple priors (i.e., the standard Gaussian distribution). Inevitably, this
alters an orthodox interpretation of the prior in Bayesian statistics.

Even if the likelihood and the prior were both faithfully constructed to capture
the real-world physics, the posterior distribution p(θ |D) is often approximated by
Gaussian distributions with diagonal covariance (sometimes with low-rank or diago-
nal assumption), to facilitate or enable the requisite computation. Undoubtedly, this is
a restrictive assumption. Foong et al. [170,128] study the quality of common approx-
imate inference methods VI and MCDO in approximating the Bayesian predictive
distribution. They shed interesting insight into the pathologies of these approxima-
tion schemes, which up to now remain poorly understood. The issue of calibrating
uncertainty estimates remains a big open question for both approximate inference
techniques and deep learning based approaches, and it is currently an active area of
research within the deep learning community [171,172].

Practical shortcomings of Bayesian neural networks
Bayesian methods have the potential to fix the shortcomings of deep learning
(e.g., over-fitting, robustness, detection of out-of-distribution samples). Yet currently
BNNs are often impractical and rarely match the performance of standard methods
[173]. The impracticability of such deep inferential machineries can be attributed to
several factors including (i) implementation complexity: BNNs are fairly sensitive to
hyper-parameter selection and initialization strategies, and the training process can
be substantially more challenging [174]; (ii) computational cost: BNNs can take or-
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ders of magnitude longer to converge than standard (deterministic) neural networks,
or alternatively, deep ensemble models require simultaneous training of multiple
networks; (iii) weak performance: BNNs rely on crude approximations to achieve
scalability, which often result in limited or unreliable uncertainty estimates [128]. In
fact, the approximating family (e.g., QFFG) may not contain good approximations to
the posterior distribution, and even if it does, the method (e.g., stochastic VI) may
not be able to find a good approximate posterior within the chosen family. Not sur-
prisingly, BNNs are rarely employed by the medical imaging community due to their
complex deployment, which tends to overshadow their theoretical advantages.

The machine learning community proposed several solutions that partially ad-
dress some of the pitfalls: recent works have largely focused on scalable inference
[81,103,119,173,175–177]. However, these have not yet been picked up by the medi-
cal imaging community, arguably due to the lack of communication between the two.
Undoubtedly, the primary goal of this review is to bridge two different communities
to inform the imaging community of the recent exciting developments in the machine
learning community.

When it comes to uncertainty quantification, medical image synthesis practi-
tioners often have blindly resorted to simple (as less expressive) Bayesian methods
(e.g., MCDO) without a second thought. The machine learning community has re-
cently proposed several solutions, which may have the potential to scale up to truly
high-dimensional data regimes, as commonly occurring in practical medical imag-
ing applications. Clearly, we still face a scalability issue. One thus may argue that if
many of the available methods (if not all!) are not yet applicable to high-dimensional
medical imaging problems, it is then acceptable to resort to MCDO. On the con-
trary, we believe that it is still worth informing the medical image community of the
existence of more “sophisticated” methods, even if those are not yet applicable to
medical imaging problems. Addressing the lack of scalability would open a myriad
of research opportunities, which the synthesis community should seize. For example,
Tezcan et al. [156] propose a novel method, which reveals a mature understanding
of the limitations of the current approaches in Bayesian deep learning. Overcoming
those led to a novel reconstruction algorithm.

Benchmarking uncertainty estimates
The lack of realistic ground truths has greatly hindered the quantitative evaluation of
the accuracy of uncertainty estimates. In practice, it is often highly desirable to vali-
date the accuracy of the approximation via golden standard MCMC, which, however,
is infeasible for many real-world synthesis applications, since the distribution of in-
terest p(y|x) (i.e., the underlying data distribution) is almost always unknown or the
resulting posterior is simply too costly even for the most advanced MCMC sampling
algorithm. Nonetheless, it may be still possible to validate the aleatoric uncertainty
by handcrafting a test dataset where the “ground truth” intrinsic noise is known (e.g.,
passing a set of medical images through a known stochastic transformation). The
validation of the parametric uncertainty is by no means less challenging as the target
distribution of interest p(θ |D) (i.e., the posterior distribution over the parameters) is
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not accessible. However, controllable and realistic means to edit input images (e.g.,
adding pathological structures or structural perturbations) would enable systemati-
cally studying what kinds of “out-of-distribution” structures can be detected through
the analysis of parametric uncertainty for different Bayesian approximation schemes
to neural networks. There have been various attempts to use distributional shift while
bench-marking parametric uncertainty [158,159].

The robustness under data shifts of the uncertainty estimate is as well under
scrutiny [159]. Robustness is strictly related to how well-calibrated uncertainty es-
timates are under domain shifts—in various settings, the test data distribution tends
to deviate from the training environment due to sample bias8 and non-stationarity,
which detracts from performance. This unfortunately occurs to uncertainty estimates
as well (i.e., non-calibrated as the distribution changes). Robustness under distri-
butional shift (e.g., the presence of out-of-distribution inputs) is necessary for the
safe deployment in clinical practice in which distributional shift is widely prevalent.
Therefore, predictive uncertainty must be well-calibrated to allow us to quantitatively
assess the risk of a possible degradation of the synthesis task while sounding out un-
known ground. This is critical since we would like to use uncertainty as a defensive
mechanism against failures.

Future work should investigate the benefits of using more complex likelihood
models (e.g., the correlations between neighboring pixels may further improve the
reconstruction quality) such as mixture models [45], diversity losses [178–180], and
more powerful density estimators [181–183], as well as more structured and expres-
sive posterior approximations [184,185]. Moreover, finding answers to the queries
above would shed insight on the clinical validation of predictive uncertainty as a
measure of practical utility.

26.4.2 How to communicate uncertainty to clinicians?
Last we discuss the challenges with communicating uncertainty to clinicians, and
risk-aware uncertainty quantification, where the risk is related to the degree to which
the synthesis has to be faithful. These challenges motivate revisiting the development
of uncertainty analysis and quantification technologies.

Ideally, the translation of uncertainty quantification technologies from the ma-
chine learning community into clinical practice should cause as little disruption as
possible to existing clinical workflows. There are several possible ways to convey un-
certainty to clinicians. The uncertainty can be either directly handed over to clinicians
as visuals by means of pixel-wise reliability scores (e.g., error bars or voxel-wise
predictive variance) or summarizing image-wise reliability scores (e.g., overall prob-
ability). Conveying uncertainty through visuals via voxel-wise variance appears more

8 Sample bias is of epistemic nature and reflects the fact that the data we observed is only in part rep-
resentative of the ground-truth data distribution. If we train our model in presence of sampling bias, it is
highly likely that it would poorly generalize towards under-represented features.
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disruptive to clinical practice than a single reliability score. Having a one-off score is
very tempting, but how will we actually go about deriving a single score from voxel-
wise reliability maps or directly estimating a single score while foregoing the full
Bayesian framework? It should be nothing less than a score that expresses whether
the synthetic image is usable or not for the given task. For example, in the context
of CT reconstruction, we may wish the score to inform us of the probability that a
certain pathology (e.g., tumor or lesion) is present in the synthesized image. This is-
sue can potentially be systematically addressed within the framework of hypothesis
testing. Alternatively, uncertainty could play only behind closed doors, either embed-
ded as a background defensive mechanism, or propagated through a pipeline (e.g., a
cascade of inferential tasks for downstream decision-making).

How to optimally propagate uncertainty quantification in downstream analysis re-
mains an open question, and is expected to be highly application dependent: different
downstream tasks would require uncertainty information of different quality. Indeed,
we argue that the uncertainty quantification procedures should take the specifics of
the downstream application into account, and we advocate for “granular” risk man-
agement as the risk depends on the downstream application.

We take radiation treatment planning as an example to show granularity of the
risk-aware decision in image synthesis. For instance, if we had to synthesize a CT,
which is often used to guide how to position radiation beams to target a tumor while
avoiding healthy areas, we would not mind if there were defects (or high unrelia-
bility) in regions outside of the reach of the photon beams. Furthermore, larger or
smaller margins could be drawn around the target—which we may want to treat or
avoid—based on the reliability of the image. Consider a scenario in which a diagnos-
tic decision is made based on a synthesized image. In order to make such a diagnostic
decision, we need to quantify how reliable the image is. Taking Cohen’s caricature
example [34], which shows how a deep learning based algorithm can “hallucinate”
cancer. If the clinician is somehow not investigating the cancer itself, this image
might still be useful. Meanwhile, if the downstream task were radiotherapy treat-
ment planning for the cancer, it would be a clear red flag not to use the image. The
ideal scenario would be to quantify risk based on the details of the application. How-
ever, risk-sensitive uncertainty quantification raises several technical and conceptual
challenges about how to apply a threshold to uncertainty (or to define an admissible
set) for risk management.

It remains unclear how to use predictive uncertainty appropriately so that we can
quantify the risks in the space in which the clinical decisions are made. This remains
a completely open question, yet we recognize the enormous importance of future
works in this direction, while realizing the full potential of uncertainty quantification
technologies in clinical practice. These discussions also have significant implications
for technology development (e.g., developing technologies that directly deliver un-
certainty estimates for the clinical practice of interest) to optimize the computational
expense.
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26.5 Concluding remarks
In this chapter we have provided an up-to-date overview of uncertainty quantifica-
tion for medical image synthesis, including image reconstruction. In recent years,
uncertainty quantification has been hailed as a very promising strategy to address
the outstanding challenge, i.e., the lack of robustness of many deep learning based
techniques, and thus has received much attention. We have described basic concepts
in uncertainty analysis (e.g., predictive, aleatoric and epistemic uncertainty) and the
potential benefits of providing uncertainty information in image synthesis along with
the usual point estimators.

Conceptually, uncertainty reasoning can be carried out elegantly within a
Bayesian framework, where all relevant information is represented by probability
distributions and different sources of information can be integrated by Bayes’ for-
mula. Nonetheless, this poses enormous computational challenges, especially with
the complex models, which have arisen in deep learning. We have discussed represen-
tative computational techniques, including classical approximate inference strategies
(e.g., MCMC, Laplace approximation, and variational inference) along with the more
recent Bayesian neural networks and Monte Carlo dropout. We have also pointed out
relevant links to open source implementations available on GitHub repositories and
discussed how to quantify the sources of uncertainty.

Lastly, we discussed the technical and clinical challenges associated with uncer-
tainty quantification. The technical ones are largely concerned with calibration of the
obtained uncertainty estimates. The clinical ones instead involve how to communi-
cate the uncertainty information without disrupting existing medical pipelines.

In sum, uncertainty quantification holds enormous potential for medical image
synthesis. However, there remain many outstanding technical and clinical challenges
that have to be overcome before these technologies can be routinely deployed in
clinical practice. This calls for further research from both theoretical and applied per-
spectives. Big practical challenges include developing scalable inference techniques,
which are as non-intrusive as possible to the current imaging pipelines and providing
clinically interpretable metrics for conveying useful uncertainty information. Theo-
retically, it is important to establish relevant mathematical–statistical guarantees for
existing and forthcoming computational techniques.
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