
Stochastic Filter Groups for Multi-Task CNNs:
Learning Specialist and Generalist Convolution Kernels

Felix J.S. Bragman∗

University College London, UK
f.bragman@ucl.ac.uk

Ryutaro Tanno∗

University College London, UK
ryutaro.tanno.15@ucl.ac.uk

Sebastien Ourselin
Kings College London

sebastien.ourselin@kcl.ac.uk

Daniel C. Alexander
University College London
d.alexander@ucl.ac.uk

M. Jorge Cardoso
Kings College London

m.jorge.cardoso@kcl.ac.uk

Abstract
The performance of multi-task learning in Convolutional

Neural Networks (CNNs) hinges on the design of feature
sharing between tasks within the architecture. The num-
ber of possible sharing patterns are combinatorial in the
depth of the network and the number of tasks, and thus
hand-crafting an architecture, purely based on the human
intuitions of task relationships can be time-consuming and
suboptimal. In this paper, we present a probabilistic ap-
proach to learning task-specific and shared representations
in CNNs for multi-task learning. Specifically, we propose
“stochastic filter groups” (SFG), a mechanism to assign
convolution kernels in each layer to “specialist” or “gener-
alist” groups, which are specific to or shared across differ-
ent tasks, respectively. The SFG modules determine the con-
nectivity between layers and the structures of task-specific
and shared representations in the network. We employ vari-
ational inference to learn the posterior distribution over
the possible grouping of kernels and network parameters.
Experiments demonstrate that the proposed method gen-
eralises across multiple tasks and shows improved perfor-
mance over baseline methods.

1. Introduction
Multi-task learning (MTL) aims to enhance learning effi-

ciency and predictive performance by simultaneously solv-
ing multiple related tasks [3]. Recently, applications of con-
volutional neural networks (CNNs) in MTL have demon-
strated promising results in a wide-range of computer vi-
sion applications, ranging from visual scene understand-
ing [39, 5, 33, 23, 36, 1] to medical image computing
[34, 4, 2, 41].

A key factor for successful MTL neural network models
is the ability to learn shared and task-specific representa-

∗Both authors contributed equally

Manually specified
architecture

x

Age

Gender
Input

Learned architecture
with our method

Shared

Task 1

Task 2
Figure 1: Figure on the left illustrates a typical multi-task archi-
tecture, while the figure on the right shows an example architecture
that can be learned with our method. We propose Stochastic Filter
Groups, a principled way to learn the assignment of convolution
kernels to task-specific and shared groups.

tions [33]. A mechanism to understand the commonalities
and differences between tasks allows the model to trans-
fer information between tasks while tailoring the predictive
model to describe the distinct characteristics of the indi-
vidual tasks. The quality of such representations is deter-
mined by the architectural design of where model compo-
nents such as features [38] and weights [32] are shared and
separated between tasks. However, the space of possible ar-
chitectures is combinatorially large, and the manual explo-
ration of this space is inefficient and subject to human bi-
ases. For example, Fig. 1 shows a typical CNN architecture
for MTL comprised of a shared “trunk” feature extractor
and task-specific “branch” networks [41, 13, 19, 21, 36, 2].
The desired amount of shared and task-specific representa-
tions, and their interactions within the architecture are de-
pendent on the difficulty of the individual tasks and the re-
lation between them, neither of which are a priori known in
most cases [44]. This illustrates the challenge of handcraft-
ing an appropriate architecture, and the need for an effective
automatic method to learn it from data.

In this paper, we propose Stochastic Filter Groups
(SFGs); a probabilistic mechanism to learn the amount
of task-specific and shared representations needed in each

1

layer of MTL architectures (Fig. 1). Specifically, the SFGs
learns to allocate kernels in each convolution layer into
either “specialist” groups or a “shared” trunk, which are
specific to or shared across different tasks, respectively
(Fig. 2). The SFG equips the network with a mechanism
to learn inter-layer connectivity and thus the structures of
task-specific and shared representations. We cast the learn-
ing of SFG modules as a variational inference problem.

We evaluate the efficacy of SFGs on a variety of tasks.
In particular, we focus on two multi-task learning problems:
1) age regression and gender classification from face im-
ages on UTKFace dataset [45] and 2) semantic regression
(i.e. image synthesis) and semantic segmentation on a real-
world medical imaging dataset, both of which require pre-
dictions over all pixels. Experiments show that our method
achieves considerably higher prediction accuracy than base-
lines with no mechanism to learn connectivity structures,
and either higher or comparable performance than a cross-
stitch network [33], while being able to learn meaningful
architectures automatically.

2. Related works
Our work is concerned with the goal of learning where

to share neural network components across different tasks to
maximise the benefit of MTL. The main challenge of such
methods lies in designing a mechanism that determines how
and where to share weights within the network. There are
broadly two categories of methods that determine the nature
of weight sharing and separation in MTL networks.

The first category is composed of methods that optimise
the structures of weight sharing in order to maximise task-
wise performance. These methods set out to learn a set a
vectors that control which features are shared within a layer
and how these are distributed across [28, 32, 33, 38]. They
start with a baseline CNN architecture where they learn ad-
ditional connections and pathways that define the final MTL
model. For instance, Cross-Stitch networks [33] control the
degree of weight sharing at each convolution layer whilst
Soft-Layer Ordering [32] goes beyond the assumption of
parallel ordering of feature hierarchies to allow features to
mix at different layers depending on the task. Routing net
[37] proposes an architecture in which each layer is a set of
function blocks, and learns to decide which composition of
blocks to use given an input and a task.

The second group of MTL methods focuses on weight
clustering based on task-similarity [43, 17, 20, 29, 31]. For
example, [29] employed an iterative algorithm to grow a
tree-like deep architecture that clusters similar tasks hier-
archically or [31] which determines the degree of weight
sharing based on statistical dependency between tasks.

Our method falls into first category, and differentiates it-
self by performing “hard’ partitioning of task-specific and
shared features. By contrast, prior methods are based on

“soft” sharing of features [33, 38] or weights [28, 32].
These methods generally learn a set of mixing coefficients
that determine the weighted sum of features throughout the
network, which does not impose connectivity structures on
the architecture. On the other hand, our method learns a
distribution over the connectivity of layers by grouping ker-
nels. This allows our model to learn meaningful grouping
of task-specific and shared features as illustrated in Fig. 7.

3. Methods
We introduce a new approach for determining where

to learn task-specific and shared representation in multi-
task CNN architectures. We propose stochastic filter
groups (SFG), a probabilistic mechanism to partition ker-
nels in each convolution layer into “specialist” groups or a
“shared” group, which are specific to or shared across dif-
ferent tasks, respectively. We employ variational inference
to learn the distributions over the possible grouping of ker-
nels and network parameters that determines the connec-
tivity between layers and the shared and task-specific fea-
tures. This naturally results in a learning algorithm that op-
timally allocate representation capacity across multi-tasks
via gradient-based stochastic optimization, e.g. stochastic
gradient descent.

p2p1 ps

0

0.9
0

0.3

0.3
0.10.8

0.1

0
0.05

0.9
0.3

0.05
1.0
0.1
0.4
0.1
0.6

Group probabilities

Cat (
Cat (
Cat (
Cat (
Cat (
Cat (

) ~
) ~
) ~
) ~
) ~
) ~

0
0

1

0
1
0

0
1

0

1
0

0

0
0

1

0
1

0

Filters Sample & Assign to Groups

w1

w2

w3

w4

w5

w6

G1

Gs

G2

“Task 1”

“Task 2”

“Shared”

Figure 2: Illustration of filter assignment in a SFG module.
Each kernel {wk} in the given convolution layer is probabilisti-
cally assigned to one of the filter groups G1, Gs, G2 according
to the sample drawn from the associated categorical distribution
Cat(p1, ps, p2).

3.1. Stochastic Filter Groups

SFGs introduce a sparse connection structure into the ar-
chitecture of CNN for multi-task learning in order to sep-
arate features into task-specific and shared components.
Ioannou et al. [14] introduced filter groups to partition ker-
nels in each convolution layer into groups, each of which
acts only on a subset of the preceding features. They
demonstrated that such sparsity reduces computational cost
and number of parameters without compromising accuracy.
Huang et al. [12] proposed a similar concept, but differs in
that the filter groups do not operate on mutually exclusive
sets of features. Here we adapt the concept of filter groups

Input

(ii) increasing task
specialisation

(i) uniform splits (iv) other (iii) asymmetrical

Figure 3: Illustration of possible grouping patterns learnable with
the proposed method. Each set of green, pink and yellow blocks
represent the ratio of filter groups G1 (red), Gs (green) and G2

(blue). (i) denotes the case where all kernels are uniformly split.
(ii) & (iii) are the cases where the convolution kernels become
more task-specific at deeper layers. (iv) shows an example with
more heterogeneous splits across tasks.

Input

G1

Gs

G2

G1

Gs

G2

G1

Gs

G2

. . .

. . .

. . .

G1

Gs

G2

G1

Gs

G2

L1

L2

Task 1 Loss

Task 2 Loss

(i) Forward Pass

(ii) Backward Pass

G1

Gs

G2

G1

Gs

G2

G1

Gs

G2

. . .

. . .

. . .

G1

Gs

G2

G1

Gs

G2

L1

L2

Input

Figure 4: Illustration of feature routing. The circles G1, Gs, G2

denote the task-specific and shared filter groups in each layer. (i)
shows the directions of routing of activations between different
filter groups while (ii) shows the directions of the gradient flow
from the task losses L1 and L2. The red and blue arrows denote
the gradients that step from L1 and L2, respectively. The task-
specific groups G1, G2 are only updated based on the associated
losses, while the shared group Gs is updated based on both.

to the multi-task learning paradigm and propose an exten-
sion with an additional mechanism for learning an optimal
kernel grouping rather than pre-specifying them.

For simplicity, we describe SFGs for the case of multi-
task learning with two tasks, but can be trivially extended
to a larger number of tasks. At the lth convolution layer in a
CNN architecture with Kl kernels {w(l),k}Kl

k=1, the associ-
ated SFG performs two operations:

1. Filter Assignment: each kernel w
(l)
k is stochasti-

cally assigned to either: i) the “task-1 specific group”
G

(l)
1 , ii) “shared group” G(l)

s or iii) “task-2 specific
group” G

(l)
2 with respective probabilities p(l),k =

[p
(l),k
1 , p

(l),k
s , p

(l),k
2] ∈ [0, 1]3. Convolving with the

respecitve filter groups yields distinct sets of features

F
(l)
1 , F

(l)
s , F

(l)
2 . Fig. 2 illustrates this operation and

Fig. 3 shows different learnable patterns.

2. Feature Routing: as shown in Fig. 4 (i), the fea-
tures F (l)

1 , F
(l)
s , F

(l)
2 are routed to the filter groups

G
(l+1)
1 , G

(l+1)
s , G

(l+1)
2 in the subsequent (l+1)th layer

in such a way to respect the task-specificity and shared-
ness of filter groups in the lth layer. Specifically, we
perform the following routing for l > 0:

F
(l+1)
1 = h(l+1)

(
[F

(l)
1 |F (l)

s] ∗G(l+1)
1

)
F (l+1)
s = h(l+1)

(
F (l)
s ∗G(l+1)

s

)
F

(l+1)
2 = h(l+1)

(
[F

(l)
2 |F (l)

s] ∗G(l+1)
2

)
where each h(l+1) defines the choice of non-linear
function, ∗ denotes convolution operation and | de-
notes a merging operation of arrays (e.g. concate-
nation). At l = 0, input image x is simply con-
volved with the first set of filter groups to yield F (1)

i =

h(1)
(
x∗G(1)

i

)
, i ∈ {1, 2, s}. Fig. 4(ii) shows that such

sparse connectivity ensures the parameters of G(l)
1 and

G
(l)
2 are only learned based on the respective task

losses, while G(l)
s is optimised based on both tasks.

Fig. 5 provides a schematic of our overall architecture,
in which each SFG module stochastically generates filter
groups in each convolution layer and the resultant features
are sparsely routed as described above. The merging mod-
ules, denoted as black circles, combine the task-specific and
shared features appropriately, i.e. [F

(l)
i |F

(l)
s], i = 1, 2 and

pass them to the filter groups in the next layer. Each white
circle denotes the presence of additional transformations
(e.g. convolutions or fully connected layers) in each h(l+1),
performed on top of the standard non-linearity (e.g. ReLU).

The proposed sparse connectivity is integral to ensure
task performance and structured representations. In partic-
ular, one might argue that the routing of “shared” features
F

(l)
s to the respective “task-specific” filter groups G(l+1)

1

and G(l+1)
2 is not necessary to ensure the separation of gra-

dients across the task losses. However, this connection al-
lows for learning more complex task-specific features at
deeper layers in the network. For example, without this
routing, having a large proportion of “shared” filter group
Gs at the first layer (Fig. 3 (ii)) substantially reduces the
amount of features available for learning task-specific ker-
nels in the subsequent layers—in the extreme case in which
all kernels in one layer are assigned to Gs, the task-specific
filter groups in the subsequent layers are effectively unused.

Another important aspect that needs to be highlighted
is the varying dimensionality of feature maps. Specifi-
cally, the number of kernels in the respective filter groups
G

(l)
1 , G

(l)
s , G

(l)
2 can vary at each iteration of the training,

Input

G1

Gs

G2

Gs

. . .

. . .

. . .

G1

Gs

G2

G1

G2

SFG SFG SFG

= Merging Operation
= Optional Transformation

x

Output

Output

Figure 5: Schematic of the proposed multi-task architecture based on a series of SFG modules in the presence of two tasks. At each
convolution layer, kernels are stochastically assigned to task-specific and shared filter groups G1, Gs, G2. Each input image is first
convolved with the respective filter groups to yield three distinct sets of output activations, which are routed sparsely to the filter groups in
the second layer layer. This process repeats in the remaining SFG modules in the architecture until the last layer where the outputs of the
final SFG module are combined into task-specific predictions ŷ1 and ŷ2. Each small white circle denotes an optional transformation (e.g.
extra convolutions) and black circle merges the incoming inputs (e.g. concatenation).

and thus, so does the depth of the resultant feature maps
F

(l)
1 , F

(l)
s , F

(l)
2 . Instead of directly working with features

maps of varying size, we implement the proposed architec-
ture by defining F (l)

1 , F
(l)
s , F

(l)
2 as sparse tensors. At each

SFG module, we first convolve the input features with all
kernels, and generate the output features from each filter
group by zeroing out the channels that root from the ker-
nels in the other groups, resulting in F (l)

1 , F
(l)
s , F

(l)
2 that are

sparse at non-overlapping channel indices. In the simplest
form with no additional transformation (i.e. the grey circles
in Fig. 5 are identity functions), we define the merging op-
eration [F

(l)
i |F

(l)
s], i = 1, 2 as pixel-wise summation. In the

presence of more complex transforms (e.g. residual blocks),
we concatenate the output features in the channel-axis and
perform a 1x1 convolution to ensure the number of channels
in [F

(l)
i |F

(l)
s] is the same as in F (l)

s .

3.2. T+1 Way Concrete “Drop-Out”

Here we derive the method for simultaneously optimis-
ing the CNN parameters and grouping probabilities. We
achieve this by extending the variational interpretation of
binary dropout [6, 7] to the (T +1)-way assignment of each
convolution kernel to the filter groups where T is the num-
ber of tasks. As before, we consider the case T = 2.

Suppose that the architecture consists of L SFG mod-
ules, each with Kl kernels where l is the index. As the
posterior distribution over the convolution kernels in SFG
modules p(W|X,Y(1),Y(2)) is intractable, we approxi-
mate it with a simpler distribution qφ(W) where W =
{W(l),k}k=1,...,Kl,l=1,...,L. Assuming that the posterior
distribution factorizes over layers and kernels up to group

assignment, we defined the variational distribution as:

qφ(W) =

L∏
l=1

Kl∏
k=1

qφlk
(W(l),k)

=

L∏
l=1

Kl∏
k=1

qφlk
(W

(l),k
1 ,W(l),k

s ,W
(l),k
2)

where {W(l),k
1 ,W

(l),k
s ,W

(l),k
2 } denotes the kth kernel

in lth convolution layer after being routed into task-
specific G(l)

1 , G
(l)
2 and shared group G(l)

s . We define each
qφlk

(W
(l),k
1 ,W

(l),k
2 ,W

(l),k
s) as:

W
(l),k
i = z

(l),k
i ·M(l),k for i ∈ {1, s, 2} (1)

z(l),k = [z
(l),k
1 , z

(l),k
2 , z(l),ks] ∼ Cat(p(l),k) (2)

where z(l),k is the one-hot encoding of a sample from the
categorical distribution over filter group assignments, and
M(l),k denotes the parameters of the pre-grouping convolu-
tion kernel. The set of variational parameters for each ker-
nel in each layer is thus given by φlk = {M(l),k,p(l),k =

[p
(l),k
1 , p

(l),k
s , p

(l),k
2]}.

We minimize the KL divergence between the approxi-
mate posterior qφ(W) and p(W|X,Y(1),Y(2)). Assuming
that the joint likelihood over the two tasks factorizes, we
have the following optimization objective:

LMC(φ) = −
N

M

M∑
i=1

[
log p(y(1)i |xi,Wi)+log p(y(2)i |xi,Wi)

]
+

L∑
l=1

Kl∑
k=1

KL(qφlk
(W(l),k)||p(W(l),k)) (3)

where M is the size of the mini-batch, N is the total num-
ber of training data points, and Wi denotes a set of model
parameters sampled from qφ(W). The last KL term regu-
larizes the deviation of the approximate posterior from the
prior p(W(l),k) = N (0, I/l2) where l > 0. Adapting the
approximation presented in [6] to our scenario, we obtain:

KL(qφlk
(W(l),k)||p(W(l),k)) ∝ l2

2
||M(l),k||22 −H(p(l),k)

(4)
where H(p(l),k) = −

∑
i∈{1,2,s} p

(l),k
i log p(l),ki is the en-

tropy of the grouping probabilities. While the first term per-
forms the L2-weight norm, the second term pulls the group-
ing probabilities towards the uniform distribution. Plugging
eq.(4) into eq.(3) yields the overall loss:

LMC(φ)=−
N

M

M∑
i=1

[
log p

(
y
(1)
i |xi,Wi

)
+log p

(
y
(2)
i |xi,Wi

)]
+ λ1 ·

L∑
l=1

Kl∑
k=1

||M(l),k||2 − λ2 ·
L∑
l=1

Kl∑
k=1

H(p(l),k) (5)

where λ1 > 0, λ2 > 0 are regularization coefficients.
We note that the discrete sampling operation during fil-

ter group assignment (eq. (2)) creates discontinuities, giv-
ing the first term in the objective function (eq. 5) zero gra-
dient with respect to the grouping probabilities {p(l),k}.
We therefore, as employed in [21] for the binary case, ap-
proximate each of the categorical variables Cat(p(l),k) by
the Gumbel-Softmax distribution, GSM(p(l),k, τ) [30, 18],
a continuous relaxation which allows for sampling, dif-
ferentiable with respect to the parameters p(l),k through
a reparametrisation trick. The temperature term τ adjusts
the bias-variance tradeoff of gradient approximation; as the
value of τ approaches 0, samples from the GSM distribu-
tion become one-hot (i.e. lower bias) while the variance of
the gradients increases. In practice, we start at a high τ and
anneal to a small but non-zero value as in [18, 7] as detailed
in supplementary materials.

4. Experiments
We tested stochastic filter groups (SFG) on two multi-

task learning (MTL) problems: 1) age regression and gen-
der classification from face images on UTKFace dataset
[45] and 2) semantic image regression (synthesis) and seg-
mentation on a medical imaging dataset.

UTKFace dataset: We tested our method on UTKFace
[45], which consists of 23,703 cropped faced images in the
wild with labels for age and gender. We created a dataset
with a 70/15/15% split. We created a secondary separate
dataset containing only 10% of images from the initial set,
so as to simulate a data-starved scenario.

Medical imaging dataset: We used a medical imaging
dataset to evaluate our method in a real-world, multi-task
problem where paucity of data is common and hard to miti-
gate. The goal of radiotherapy treatment planning is to max-
imise radiation dose to the tumour whilst minimising dose
to the organs. To plan dose delivery, a Computed Tomogra-
phy (CT) scan is needed as CT voxel intensity scales with
tissue density, thus allowing dose propagation simulations.
An MRI scan is needed to segment the surrounding organs.
Instead of acquiring both an MRI and a CT, algorithms can
be used to synthesise a CT scan (task 1) and segment or-
gans (task 2) given a single input MRI scan. For this ex-
periment, we acquired 15, 3D prostate cancer scans with
respective CT and MRI scans with semantic 3D labels for
organs (prostate, bladder, rectum and left/right femur heads)
obtained from a trained radiologist. We created a training
set of 10 patients, with the remaining 5 used for testing. We
trained our networks on 2D patches of size 128x128 ran-
domly sampled from axial slices, and reconstructed the 3D
volumes of size 288x288x62 at test time by stitching to-
gether the subimage-wise predictions.

4.1. Baselines

We compared our model against four baselines in addi-
tion to Cross-Stitch networks [33] trained end-to-end rather
than sequentially for fair comparison. The four baselines
considered are: 1) single-task networks, 2) hard-parameter
sharing multi-task network (MT-hard sharing), 3) SFG-
networks with constant 1/3 allocated grouping (MT-constant
mask) as per Fig. 3(i), and 4) SFG-networks with constant
grouping probabilities (MT-constant p). We train all the
baselines in an end-to-end fashion for all the experiments.

We note that all four baselines can be considered special
cases of an SFG-network. Two single-task networks can be
learned when the shared grouping probability of kernels is
set to zero. Considering Fig. 5, this would remove the di-
agonal connections and the shared network. This may be
important when faced with two unrelated tasks which share
no contextual information. A hard-parameter sharing net-
work exists when all shared grouping probabilities are max-
imised to one leading to a scenario where all features are
shared within the network up until the task-specific layers.
The MT-constant mask network is illustrated in Fig. 3(i),
where 1/3 of kernels are allocated to the task 1, task 2 and
shared groups, yielding uniform splits across layers. This
occurs when an equal number of kernels in each layer ob-
tain probabilities of p(l),k = [1, 0, 0], [0, 1, 0] and [0, 0, 1].
Lastly, the MT-constant p model represents the situation
where the grouping is non-informative and each kernel has
equal probability of being specific or shared with probabil-
ity p(l),k = [1/3, 1/3, 1/3]. Training details for these models,
including the hyper-parameter settings, are provided in the
supplementary document.

UTKFace network: We used VGG-11 CNN architecture
[40] for age and gender prediction. The network consists
of a series of 3x3 convolutional layers interleaved with max
pooling layers. In contrast to the original architecture, we
replaced the final max pooling and fully connected layers
with global average pooling (GAP) followed by a fully con-
nected layers for prediction. Our model’s version of VGG
(SFG-VGG) replaces each convolutional layer in VGG-11
with a SFG layer with max pooling applied to each feature
map F (l)

1 , F (l)
2 , F (l)

s . We applied GAP to each final fea-
ture map before the final merging operation and two fully
connected layers for each task.

Medical imaging network: We used the HighResNet
architecture [26] for CT synthesis and organ segmentation.
This network has been developed for semantic segmenta-
tion in medical imaging and has been used in a variety of
medical applications such as CT synthesis [2] and brain
segmentation [26]. It consists of a series of residual blocks,
which group two 3x3 convolutional layers with dilated
convolutions. The baseline network is composed of a 3x3
convolutional layer followed by three sets of twice repeated
residual blocks with dilated convolutions using factors
d = [1, 2, 4]. There is a 3x3 convolutional layer between
each set of repeated residual blocks. The network ends with
two final 3x3 layers and either one or two 1x1 convolutional
layers for single and multi-task predictions. In our model,
we replace each convolutional layer with an SFG module.
After the first SFG layer, three distinct repeated residual
blocks are applied to F

(l=0)
1 , F (l=0)

2 , F (l=0)
s . These are

then merged according the feature routing methodology
followed by a new SFG-layer and subsequent residual
layers. Our model concludes with 2 successive SFG-layers
followed by 1x1 convolutional layers applied to the merged
features F (l=L)

1 and F (l=L)
2 .

5. Results
5.1. Age regression and gender prediction

Results on age prediction and gender classification on
both datasets are presented in Tab. 1a and 1b. Our model
(MT-SFG) achieved the best performance in comparison to
the baselines in both data regimes. In both sets of experi-
ments, our model outperformed the hard-parameter sharing
(MT-hard sharing) and constant allocation (MT-constant
mask). This demonstrates the advantage of learning to al-
locate kernels. In the MT-constant mask model, kernels are
equally allocated across groups. In contrast, our model is
able to allocate kernels in varying proportions across differ-
ent layers in the network (Fig. 6 - SFG-VGG11) to max-
imise inductive transfer. Moreover, our methods performed
better than a model with constant, non-informative group-
ing probabilities (MT-constant p= [1/3, 1/3, 1/3]), displaying

(a) Full training data

Method
Age Gender

(MAE) (Accuracy)

One-task (VGG11) [40] 7.32 90.70
MT-hard sharing 7.92 90.60
MT-constant mask 7.67 89.41
MT-constant p=[1/3,1/3,1/3] 6.34 92.10
VGG11 Cross Stitch [33] 6.78 90.30
MT-SFG (ours) 6.00 92.46

(b) Small training data

Method
Age Gender

(MAE) (Accuracy)

One-task (VGG11) [40] 8.79 85.54
MT-hard sharing 9.19 85.83
MT-constant mask 9.02 85.98
MT-constant p=[1/3,1/3,1/3] 9.15 86.01
VGG11 Cross Stitch [33] 8.85 83.72
MT-SFG (ours) 8.54 87.01

Table 1: Age regression and gender classification results on UTK-
Face [45] with (a) the full and (b) limited training set. The best and
the second best results are shown in red and blue. The mean abso-
lute error (MAE) is reported for the age prediction and classifica-
tion accuracy for gender prediction. For our model, we performed
50 stochastic forward passes at test time by sampling the kernels
from the approximate posterior qφ(W). We calculated the average
age per subject and obtained gender prediction using the mode of
the test-time predictions.

the importance of learning structured representations and
connectivity across layers to yield good predictions.

5.2. Image regression and semantic segmentation

Results on CT image synthesis and organ segmentation
from input MRI scans is detailed in Tab. 2. Our method ob-
tains equivalent (non-statistically significant different) re-
sults to the Cross-Stitch network [33] on both tasks. We
have, however, observed best synthesis performance in the
bone regions (femur heads and pelvic bone region) in our
model when compared against all the baselines, including
Cross-Stitch. The bone voxel intensities are the most diffi-
cult to synthesise from an input MR scan as task uncertainty
in the MR to CT mapping at the bone is often highest [2].
Our model was able to disentangle features specific to the
bone intensity mapping (Fig. 7) without supervision of the
pelvic location, which allowed it to learn a more accurate
mapping of an intrinsically difficult task.

5.3. Learned architectures
Analysis of the grouping probabilities of a network em-

bedded with SFG modules permits visualisation of the net-
work connectivity and thus the learned MTL architecture.

(a) CT Synthesis (PSNR)

Method Overall Bones Organs Prostate Bladder Rectum

One-task (HighResNet) [26] 25.76 (0.80) 30.35 (0.58) 38.04 (0.94) 51.38 (0.79) 33.34 (0.83) 34.19 (0.31)
MT-hard sharing 26.31 (0.76) 31.25 (0.61) 39.19 (0.98) 52.93 (0.95) 34.12 (0.82) 34.15 (0.30)
MT-constant mask 24.43(0.57) 29.10(0.46) 37.24(0.86) 50.48(0.73) 32.29(1.01) 33.44(2.88)
MT-constant p=[1/3,1/3,1/3] 26.64(0.54) 31.05 (0.55) 39.11 (1.00) 53.20 (0.86) 34.34 (1.35) 35.61 (0.35)
Cross Stitch [33] 27.86 (1.05) 32.27 (0.55) 40.45 (1.27) 54.51 (1.01) 36.81 (0.92) 36.35 (0.38)
MT-SFG (ours) 27.74 (0.96) 32.29 (0.59) 39.93 (1.09) 53.01 (1.06) 35.65 (0.44) 35.65 (0.37)

(b) Segmentation (DICE)

Method Overall Left Femur Head Right Femur Head Prostate Bladder Rectum

One-task (HighResNet) [26] 0.848(0.024) 0.931 (0.012) 0.917 (0.013) 0.913 (0.013) 0.739 (0.060) 0.741 (0.011)
MT-hard sharing 0.829(0.023) 0.933 (0.009) 0.889 (0.044) 0.904 (0.016) 0.685 (0.036) 0.732 (0.014)
MT-constant mask 0.774(0.065) 0.908 (0.012) 0.911 (0.015) 0.806 (0.0541) 0.583 (0.178) 0.662 (0.019)
MT-constant p=[1/3,1/3,1/3] 0.752(0.056) 0.917 (0.004) 0.917 (0.01) 0.729 (0.086) 0.560 (0.180) 0.639 (0.012)
Cross Stitch [33] 0.854 (0.036) 0.923 (0.008) 0.915 (0.013) 0.933 (0.009) 0.761 (0.053) 0.737 (0.015)
MT-SFG (ours) 0.852(0.047) 0.935 (0.007) 0.912 (0.013) 0.923 (0.016) 0.750 (0.062) 0.758 (0.011)

Table 2: Performance on the medical imaging dataset with best results in red, and the second best results in blue. The PSNR is reported
for the CT-synthesis (synCT) across the whole volume (overall), at the bone regions, across all organ labels and individually at the prostate,
bladder and rectum. For the segmentation, the average DICE score per patient across all semantic labels is computed. The standard
deviations are computed over the test subject cohort. For our model, we perform 50 stochastic forward passes at test-time by sampling the
kernels from the approximated posterior distribution qφ(W). We compute the average of all passes to obtain the synCT and calculate the
mode of the segmentation labels for the final segmentation.

To analyse the group allocation of kernels at each layer,
we computed the sum of class-wise probabilities per layer.
Learned groupings for both SFG-VGG11 network trained
on UTKFace and the SFG-HighResNet network trained on
prostate scans are presented in Fig. 6. These figures il-
lustrate increasing task specialisation in the kernels with
network depth. At the first layer, all kernels are classified
as shared (p= [0, 1, 0]) as low-order features such as edge
or contrast descriptors are generally learned earlier layers.
In deeper layers, higher-order representations are learned,
which describe various salient features specific to the tasks.
This coincides with our network allocating kernels as task
specific, as illustrated in Fig. 7, where activations are strati-
fied by allocated class per layer. Density plots of the learned
kernel probabilities and trajectory maps displaying training
dynamics, along with more examples of feature visualisa-
tions, are provided in supplementary materials.

Notably, the learned connectivity of both models shows
striking similarities to hard-parameter sharing architectures
commonly used in MTL. Generally, there is a set of shared
layers, which aim to learn a feature set common to both
tasks. Task-specific branches then learn a mapping from
this feature space for task-specific predictions. Our models
are able to automatically learn this structure whilst allow-
ing asymmetric allocation of task-specific kernels with no
priors on the network structure.

5.4. Effect of p initialisation
Fig. 3 shows the layer-wise proportion of the learned ker-

nel groups on the UTKFace dataset for four different ini-

tilization schemes of grouping probabilities p: (i) “domi-
nantly shared”, with p = [0.2, 0.6, 0.2], (ii) “dominantly
task-specific”, with p = [0.45, 0.1, 0.45], (iii) “random”,
where p is drawn from Dirichlet(1, 1, 1), (iv) “start with
MT-constant mask”, where an equal number of kernels in
each layer are set to probabilities of p = [1, 0, 0], [0, 1, 0]
and [0, 0, 1]. In all cases, the same set of hyper-parameters,
including the annealing rate of the temperature term in GSM
approximation and the coefficient of the entropy regularizer
H(p), were used during training. We observe that the ker-
nel grouping of respective layers in (i), (ii) and (iii) all con-
verge to a very similar configuration observed in Sec. 5.3,
highlighting the robustness of our method to different ini-
tialisations of p. In case (iv), the learning of p were much
slower than the remaining cases, due to weaker gradients,

SFG-VGG11 SFG-HighResNet

Figure 6: Learned kernel grouping in a) SFG-VGG11 network on
UTKFace and b) SFG-HighResNet on medical scans. The propor-
tions of task-1, shared and task-2 filter groups are shown in blue,
green and pink. Within SFG-VGG11, task-1 age regression and
task-2 is gender classification. For SFG-HighResNet, task-1 is CT
synthesis and task-2 is organ segmentation.

Input

Segmentation

Synthesis

Figure 7: Activation maps from example kernels in the learned task-specific and shared filter groups, G(l)
1 , G

(l)
2 , G

(l)
s (en-

closed in blue, green and pink funnels) in the first, the second last and the last convolution layers in the SFG-HighResNet
model trained on the medical imaging dataset. The results from convolution kernels with low entropy (i.e. high “confidence”)
of group assignment probabilities p(l) are shown for the respective layers.

and we speculate that a higher entropy regularizer is neces-
sary to facilitate its convergence.

6. Discussion
In this paper, we have proposed stochastic filter groups

(SFGs) to disentangle task-specific and generalist features.
SFGs probabilistically defines the grouping of kernels
and thus the connectivity of features in a CNNs. We
use variational inference to approximate the distribution
over connectivity given training data and sample over
possible architectures during training. Our method can be
considered as a probabilistic form of multi-task architecture
learning [27], as the learned posterior embodies the optimal
MTL architecture given the data.

Our model learns structure in the representations. The
learned shared (generalist) features may be exploited either

(ii)(i)

(iii) (iv)

Figure 8: Effect of the initial values of grouping probabilities p
on the learned kernel allocation after convergence.

in a transfer learning or continual learning scenario. As
seen in [24], an effective prior learned from multiple tasks
can be a powerful tool for learning new, unrelated tasks.
Our model consequently offers the possibility to exploit
the learned task-specific and generalist features when faced
with situations where a third task is needed, which may
suffer from unbalanced or limited training data. This is
particularly relevant in the medical field, where training
data is expensive to acquire as well as laborious. We will
investigate this in further work.

Lastly, a network composed of SFG modules can be
seen as a superset of numerous MTL architectures. De-
pending on the data and the analysed problem, SFGs can
recover many different architectures such as single task net-
works, traditional hard-parameter sharing, equivalent allo-
cation across tasks, and asymmetrical grouping (Fig. 3).
Note, however, that proposed SFG module only learns con-
nectivity between neighbouring layers. Non-parallel order-
ing of layers, a crucial concept of MTL models [32, 38],
was not investigated. Future work will look to investigate
the applicability of SFG modules for learning connections
across grouped kernels between non-neighbouring layers.

Acknowledgments

FB and MJC were supported by CRUK Accelerator Grant
A21993. RT was supported by Microsoft Scholarship. DA
was supported by EU Horizon 2020 Research and Innova-
tion Programme Grant 666992, EPSRC Grant M020533,
R014019, and R006032 and the NIHR UCLH BRC. We
thank NVIDIA Corporation for hardware donation.

References
[1] Hakan Bilen and Andrea Vedaldi. Integrated perception with

recurrent multi-task neural networks. In Advances in neural
information processing systems, pages 235–243, 2016.

[2] Felix Bragman, Ryu Tanno, Zach Eaton-Rosen, Wenqi Li,
David Hawkes, Sebastien Ourselin, Daniel Alexander, Jamie
McClelland, and M. Jorge Cardoso. Uncertainty in multi-
task learning: joint representations for probabilistic mr-only
radiotherapy planning. In Medical Image Computing and
Computer-Assisted Interventions (MICCAI), 2018.

[3] Rich Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[4] Sihong Chen, Dong Ni, Jing Qin, Baiying Lei, Tianfu Wang,
and Jie-Zhi Cheng. Bridging computational features to-
ward multiple semantic features with multi-task regression:
A study of ct pulmonary nodules. In International Confer-
ence on Medical Image Computing and Computer-Assisted
Intervention, pages 53–60. Springer, 2016.

[5] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale con-
volutional architecture. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2650–2658,
2015.

[6] Yarin Gal. Uncertainty in deep learning. University of Cam-
bridge, 2016.

[7] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In
Advances in Neural Information Processing Systems, pages
3581–3590, 2017.

[8] Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon,
Dzhoshkun I. Shakir, Guotai Wang, Zach Eaton-Rosen,
Robert Gray, Tom Doel, Yipeng Hu, Tom Whyntie,
Parashkev Nachev, Marc Modat, Dean C. Barratt, Sébastien
Ourselin, M. Jorge Cardoso, and Tom Vercauteren. NiftyNet:
a deep-learning platform for medical imaging. Computer
Methods and Programs in Biomedicine, 158:113–122, 2018.

[9] Marc Harper. python-ternary: Ternary plots in python. In
10.5281/zenodo.34938, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification, 2015.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks, 2016.

[12] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-
ian Q Weinberger. Condensenet: An efficient densenet us-
ing learned group convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2752–2761, 2018.

[13] Junshi Huang, Rogerio S Feris, Qiang Chen, and Shuicheng
Yan. Cross-domain image retrieval with a dual attribute-
aware ranking network. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1062–1070,
2015.

[14] Yani Ioannou, Duncan Robertson, Roberto Cipolla, Antonio
Criminisi, et al. Deep roots: Improving cnn efficiency with
hierarchical filter groups. 2017.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[16] Fabian Isensee, Jens Petersen, Andre Klein, David Zim-
merer, Paul F. Jaeger, Simon Kohl, Jakob Wasserthal, Gregor
Koehler, Tobias Norajitra, Sebastian Wirkert, and Klaus H.
Maier-Hein. nnu-net: Self-adapting framework for u-net-
based medical image segmentation, 2018.

[17] Laurent Jacob, Jean philippe Vert, and Francis R. Bach.
Clustered multi-task learning: A convex formulation. In Ad-
vances in Neural Information Processing Systems 21, 2009.

[18] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[19] Brendan Jou and Shih-Fu Chang. Deep cross residual learn-
ing for multitask visual recognition. In Proceedings of the
24th ACM international conference on Multimedia, pages
998–1007. ACM, 2016.

[20] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learn-
ing with whom to share in multi-task feature learning. In
Proceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, ICML’11, pages
521–528, USA, 2011. Omnipress.

[21] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference for
Learning Representations, 2015.

[23] Iasonas Kokkinos. Ubernet: Training a universal convolu-
tional neural network for low-, mid-, and high-level vision
using diverse datasets and limited memory. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6129–6138, 2017.

[24] Alexandre Lacoste, Boris Oreshkin, Wonchang Chung,
Thomas Boquet, Negar Rostamzadeh, and David
Krueger. Uncertainty in multitask transfer learning. In
arXiv:1806.07528, 2018.

[25] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In Advances in Neural Infor-
mation Processing Systems, pages 6402–6413, 2017.

[26] Wenqi Li, Guotai Wang, Lucas Fidon, Sebastien Ourselin,
M. Jorge Cardoso, and Tom Vercauteren. On the compact-
ness, efficiency, and representation of 3d convolutional net-
works: Brain parcellation as a pretext task. 2017.

[27] Jason Liang, Elliot Meyerson, and Risto Miikkulainen. Evo-
lutionary architecture search for deep multitask networks. In
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 466–473. ACM, 2018.

[28] Mingsheng Long and Jianmin Wang. Learning multiple tasks
with deep relationship networks. In Advances in Neural In-
formation Processing Systems, 2017.

[29] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng,
Tara Javidi, and Rogério Schmidt Feris. Fully-adaptive fea-
ture sharing in multi-task networks with applications in per-

son attribute classification. In CVPR, volume 1, page 6,
2017.

[30] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. arXiv preprint arXiv:1611.00712, 2016.

[31] Youssef A Mejjati, Darren Cosker, and Kwang In Kim.
Multi-task learning by maximizing statistical dependence.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3465–3473, 2018.

[32] Elliot Meyerson and Risto Miikkulainen. Beyond shared hi-
erarchies: Deep multitask learning through soft layer order-
ing. In International Conference on Learning Representa-
tions, 2018.

[33] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-
tial Hebert. Cross-stitch Networks for Multi-task Learning.
In CVPR, 2016.

[34] Pim Moeskops, Jelmer M Wolterink, Bas HM van der
Velden, Kenneth GA Gilhuijs, Tim Leiner, Max A Viergever,
and Ivana Išgum. Deep learning for multi-task medical im-
age segmentation in multiple modalities. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 478–486. Springer, 2016.

[35] L.G. Nyul, J.K. Udupa, and Xuan Zhang. New variants of a
method of MRI scale standardization. IEEE Transactions on
Medical Imaging, 19(2):143–150, 2000.

[36] Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. Hy-
perface: A deep multi-task learning framework for face de-
tection, landmark localization, pose estimation, and gender
recognition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 41(1):121–135, 2019.

[37] Clemens Rosenbaum, Tim Klinger, and Matthew
Riemer. Routing networks: Adaptive selection of non-
linear functions for multi-task learning. arXiv preprint
arXiv:1711.01239, 2017.

[38] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and
Anders Søgaard. Latent multi-task architecture learning.
2019.

[39] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Math-
ieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated
recognition, localization and detection using convolutional
networks. In ICLR, 2014.

[40] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition, 2014.

[41] Ryutaro Tanno, Antonios Makropoulos, Salim Arslan, Ozan
Oktay, Sven Mischkewitz, Fouad Al-Noor, Jonas Oppen-
heimer, Ramin Mandegaran, Bernhard Kainz, and Mattias P
Heinrich. Autodvt: Joint real-time classification for vein
compressibility analysis in deep vein thrombosis ultrasound
diagnostics. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 905–
912. Springer, 2018.

[42] Nicholas J Tustison, Brian B Avants, Philip A Cook, Yuanjie
Zheng, Alexander Egan, Paul A Yushkevich, and James C
Gee. N4itk: Improved n3 bias correction. IEEE Transactions
on Medical Imaging, 29(6):1310–1320, 2010.

[43] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krish-
napuram. Multi-task learning for classification with dirich-

let process priors. Journal of Machine Learning Research,
8(Jan):35–63, 2007.

[44] Amir R. Zamir, Alexander Sax, William B. Shen, Leonidas J.
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE,
2018.

[45] Song Yang Zhang, Zhifei and Hairong Qi. Age progres-
sion/regression by conditional adversarial autoencoder. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, 2017.

A. Training and implementation details
A.1. Optimisation, regularisation and initialisation

All networks were trained with ADAM optimiser [22]
with an initial learning rate of 10−3 and β = [0.9, 0.999].
We used values of λ1 = 10−6 and λ2 = 10−5 for the weight
and entropy regularisation factors in Equation (5) in Sec-
tion 3.2. All stochastic filter group (SFG) modules were
initialised with grouping probabilities p=[0.2, 0.6, 0.2] for
every convolution kernel. Positivity of the grouping proba-
bilities p is enforced by passing the output through a soft-
plus function f(x) = ln(1 + ex) as in [25]. The scheduler
τ = max(0.10, exp(−rt)) recommended in [18] was used
to anneal the Gumbel-Softmax temperature τ where r is the
annealing rate and t is the current training iteration. We
used r = 10−5 for our models.

Hyper-parameters for the annealing rate and the entropy
regularisation weight were obtained by analysis of the net-
work performance on a secondary randomly split on the
UTK dataset (70/15/15). They were then applied to all
trained models (large and small dataset for UTKFace and
medical imaging dataset).

A.2. UTKFace

For training the VGG networks (Section 4.1 - UTKFace
network), we used the root-mean-squared-error (RMSE) for
age regression and the cross entropy loss for gender classi-
fication. The labels for age were divided by 100 prior to
training. The input RGB images (200x200x3) were all nor-
malised channel wise to have unit variance and zero mean
prior to training and testing. A batch-size of 10 was used.
No augmentation was applied. We monitored performance
during training using the validation set (n = 3554) and
trained up to 330 epochs. We performed 150 validation it-
erations every 1000 iterations, leading to 1500 predictions
per validation iteration. Performance on the validation set
was analysed and the iteration where Mean Absolute Er-
ror (MAE) was minimised and classification Accuracy was
maximised was chosen for the test set.

A.3. Medical imaging dataset

We used T2-weighted Magnetic Resonance Imaging
(MRI) scans (3T, 2D spin echo, TE/TR: 80/2500ms, voxel
size 1.46x1.46x5mm3) and Computed Tomography (CT)
scans (140 kVp, voxel size 0.98x0.98x1.5 mm3). The
MR and CT scans were resampled to isotropic resolution
(1.46mm3). We performed intensity non-uniformity correc-
tion on the MR scans [42].

In the HighResNet networks (Section 4.1 - Medical
imaging network), we used the RMSE loss for the regres-
sion task and the Dice + Cross-Entropy loss [16] for the
segmentation task. The CT scans were normalised using
the transformation CT/1024 + 1. The original range of the

CT voxel intensity was [−1024, 2500] with the background
set to −1024. The input MRI scans were first normalised
using histogram normalisation based on the 1st and 99th

percentile [35]. The MRI scans were then normalised to
zero mean and unit variance. At test time, input MRI scans
were normalised using the histogram normalisation trans-
formation obtained from the training set then normalised to
have zero mean and unit variance.

All scans were of size 288x288x62. We sub-sampled
random patches from random axial slices of size 128x128.
We sampled from all axial slices in the volume (n = 62).
We trained up to 200, 000 iterations using a batch-size of 10.
We applied augmentation to the randomly sampled patches
using random scaling factors in the range [−10%, 10%]
and random rotation angles in the range [−10◦, 10◦]. The
trained patches were zero-padded to increase their size to
136x136. However, the loss during training was only calcu-
lated in non-padded regions.

The inference iteration for the test set was determined
when the performance metrics on the training set (Mean
Absolute Error and Accuracy) first started to converge for
at least 10, 000 iterations. In our model where the grouping
probabilities were learned, the iteration when convergence
in the update of the grouping probabilities was first ob-
served was selected since performance generally increased
as the grouping probabilities were updated.

A.4. Implementation details

We used Tensorflow and implemented our models within
the NiftyNet framework [8]. Models were trained on
NVIDIA Titan Xp, P6000 and V100. All networks were
trained in the Stochastic Filter Group paradigm. Single-
task networks were trained by hard-coding the allocation
of kernels to task 1 and task 2 i.e. 50% of kernels per
layer were allocated to task 1 and 50% were allocated to
task 2 with constant probabilities p=[1,0,0] and p=[0,0,1]
respectively. The multi-task hard parameter sharing (MT
hard-sharing) network was trained by hard-coding the al-
location of kernels to the shared group i.e. 100% of ker-
nel per layer were allocated to the shared group with con-
stant probability p=[0, 1, 0]. The cross-stitch (CS) [33] net-
works were implemented in a similar fashion to the single-
task networks, with CS modules applied to the output of the
task-specific convolutional layers. The other baselines (MT-
constant mask and MT-constant p=[1/3, 1/3, 1/3]) were trained
similarly.

We used Batch-Normalisation [15] to help stabilise train-
ing. We observed that the deviation between population
statistics and batch statistics can be high, and thus we did
not use population statistic at test time. Rather, we nor-
malised using batch-statistics instead, and this consistently
lead to better predictive performance. We also used the
Gumbel-Softmax approximation [18] at test-time using the

temperature value τ that corresponded to the iteration in τ
annealing schedule.

B. CNN architectures and details
We include schematics and details of the single-task

VGG11 [40] and HighResNet [26] networks in Fig. 9. In
this work, we constructed multi-task architectures by aug-
menting these networks with the proposed SFG modules.
We used the PReLU activation function [10] in all networks.
For the residual blocks used in the HighResNet networks
in Fig. 9 (ii), we applied PReLU and batch-norm as pre-
activation [11] to the convolutional layers. The SFG mod-
ule was used to cluster the kernels in every coloured layer
in Fig. 9, and distinct sets of additional transformations
(pooling operations for VGG and high-res blocks for High-
ResNet) were applied to the outputs of the respective filter
groupsG1, G2, Gs. For a fair comparison, the CS units [33]
were added to the same set of layers.

For clarification, the SFG layer number n (e.g. SFG
layer 2) corresponds to the nth layer with an SFG module.
In the case of SFG-VGG11, each convolutional layer uses
SFGs. The SFG layer number thus corresponds with layer
number in the network. In the case of SFG-HighResNet, not
every convolutional layer uses SFGs such as those within
residual blocks. Consequently, SFG layer 1 corresponds to
layer 1, SFG layer 2 is layer 6, SFG layer 3 is layer 11, SFG
layer 4 is layer 16 and SFG layer 5 is layer 17.

C. Learned grouping probability plots
In this section, we illustrate density plots of the learned

grouping probabilities p for each trained network (Fig. 10
and Fig. 11). We also plot the training trajectories of group-
ing probabilities p of all kernels in each layer. These are
colour coded by iteration number—blue for low and yellow
for high iteration number. This shows that some grouping
probabilities are quickly learned in comparison to others.

Fig. 10 and Fig. 11 show that most kernels are in the
shared group at earlier layers of the network where mostly
low-order generic features are learned (as illustrated in
Fig. 12, SFG layer 1). They converge quickly to the
shared vertex of the 2-simplex as evidenced by the colour of
the trajectory plots. As the network depth increases, task-
specialisation in the kernels increases (see Fig. 12, SFG
layer ≥ 4). This is illustrated by high density clusters at
task-specific vertices and by the trajectory plots.

D. Extra visualisation of activations
Here we visualise the activation maps of additional

specialist and generalist kernels on the medical imaging
dataset. To classify each kernel according to the group (task
1, task 2 or shared), we selected the group with the respec-
tive maximum assignment probability. The corresponding

activation maps for various input images in the medical
imaging dataset can be viewed in Fig. 12 and Fig. ??.

We first analysed the activation maps generated by ker-
nels with low entropy of p (i.e. highly confident group as-
signment). At the first layer, all kernels are classified as
shared, and the examples in Fig. 12 support that these ker-
nels tend to account for low-order features such as edge
and contrast of the images. On the other hand, at deeper
layers, higher-order representations are learned, which de-
scribe various salient features specific to the tasks such as
organs for segmentation, and bones for CT-synthesis. Note
that the bones are generally the most difficult region to syn-
thesise CT intensities from an input MR scan [2].

Secondly, we looked at activation maps from kernels
with high entropy of p (i.e. highly uncertain group assign-
ment) in Fig. ??. In contrast to Fig. 12, the learned fea-
tures do not appear to capture any meaningful structures for
both synthesis and segmentation tasks. Of particular note
is the dead kernel in the top row of the figure; displaying
that a high uncertainty in group allocation correlates with
non-informative features.

E. Learned filter groups on duplicate tasks
We analysed the dynamics of a network with SFG mod-

ules when trained with two duplicates of the same CT re-
gression task (instead of two distinct tasks). Fig. 13 visu-
alises the learned grouping and trajectories of the grouping
probabilities during training. In the first 3 SFG layers (lay-
ers 1, 6 and 11 of the network), all the kernels are grouped
as shared. In the penultimate SFG layer (layer 16), either
kernels are grouped as shared or with probability p=[1/2, 0,
1/2], signifying that the kernels can belong to either task.
The final SFG layer (layer 17) shows that most kernels have
probabilities p=[1/3, 1/3, 1/3]. Kernels thus have equal proba-
bility of being task-specific or shared. This is expected as
we are training on duplicate tasks and therefore the kernels
are equally likely to be useful across all groups.

3x3 convolutions
64 kernels PReLU Batch

Norm. Max Pooling
2x2 S=2

Repeated 3x3 convolutions
256 kernels PReLU Batch

Norm.

Repeated 3x3 convolutions
512 kernels PReLU Batch

Norm.

Global Average
Pooling

Fully Connected
Layer

3x3 convolutions
128 kernels PReLU Batch

Norm.

x ŷ

(i) VGG11

(ii) HighResNet

x ŷ

A block with
residual connections

3x3 convolutions
16 kernels

Batch
Norm. PReLU

3x3 convolutions
32 kernels

Batch
Norm. PReLU

3x3 convolutions
64 kernels

Batch
Norm. PReLU

3x3 convolutions
16 kernels

Batch
Norm. PReLU

3x3 convolutions
32 kernels, dilated by 2

Batch
Norm. PReLU

3x3 convolutions
64 kernels, dilated by 4

Batch
Norm. PReLU

Layers with SFG/CS modules

1x1 convolutions
Output

Additional transformations

Layers with SFG/CS modules Additional transformations

Figure 9: Illustration of the single-task architectures, (i) VGG11 and (ii) HighResNet used for UTKFace and medical imaging
dataset, respectively. In each architecture, the coloured components indicate the layers to which SFG or cross-stitch (CS)
modules are applied when extended to the multi-task learning scenario, whilst the components in black denote the additional
transformations applied to the outputs of respective filter groups or CS operations (see the description of black circles in the
schematic provided in Fig. 5 of the main text)

.

SFG Layer 1 SFG Layer 2 SFG Layer 3 SFG Layer 4

SFG Layer 5 SFG Layer 6 SFG Layer 7 SFG Layer 8

Figure 10: Density plots and trajectory plots of the learned grouping probabilities for the SFG-VGG11 architecture. The
density plots represents the final learned probabilities per layer for each kernel. The trajectory plots represent how the
grouping probabilities are learned during training and thus how the connectivity is determined. Histograms of the grouping
probabilities were smoothed with a Gaussian kernel with σ = 1. The densities are mapped to and visualised in the 2-simplex
using python-ternary [9].

SFG Layer 1 SFG Layer 2 SFG Layer 3 SFG Layer 4 SFG Layer 5

Figure 11: Density plots and trajectory plots of the learned grouping probabilities for the SFG-HighResNet architecture.
The density plots represents the final learned probabilities per layer for each kernel. The trajectory plots represent how the
grouping probabilities are learned during training and thus how the connectivity is determined.

Input MR

SFG Layer 1

Shared Task 2Task 2 Task 1Task 1

SFG Layer 4 SFG Layer 5

Figure 12: Example activations for kernels with low entropy of p (i.e. group assignment with high confidence) for three input
MR slices in the SFG-HighResNet multi-task network. Columns “Shared”, “Task 1” & “Task 2” display the results from the
shared, CT-synthesis and organ-segmentation specific filter groups in respective layers. We illustrate activations stratified by
group in layer 1 (SFG layer 1), layer 16 (SFG layer 4) and layer 17 (SFG layer 5).

Input MR Task 2Task 2 Task 1Task 1

SFG Layer 4 SFG Layer 5

Increasing network depth

Figure 13: Top: density plots for the learned grouping probabilities at each SFG layer in a model where we trained on
duplicate tasks i.e. task 1 is CT synthesis and task 2 is also CT synthesis. Bottom: trajectories of the grouping probabilities
during training.

