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Abstract
Segmentation of ultra-high resolution images is challenging because of their
enormous size, consisting of millions or even billions of pixels. Typical solutions
include dividing input images into patches of fixed size and/or down-sampling
to meet memory constraints. Such operations incur information loss in the
field-of-view (FoV) i.e., spatial coverage and the image resolution. The impact
on segmentation performance is, however, as yet understudied. In this work, we
start with a motivational experiment which demonstrates that the trade-off between
FoV and resolution affects the segmentation performance on ultra-high resolution
images—and furthermore, its influence also varies spatially according to the
local patterns in different areas. We then introduce foveation module, a learnable
“dataloader” which, for a given ultra-high resolution image, adaptively chooses the
appropriate configuration (FoV/resolution trade-off) of the input patch to feed to the
downstream segmentation model at each spatial location of the image. The foveation
module is jointly trained with the segmentation network to maximise the task perfor-
mance. We demonstrate on three publicly available high-resolution image datasets
that the foveation module consistently improves segmentation performance over the
cases trained with patches of fixed FoV/resolution trade-off. Our approach achieves
the SoTA performance on the DeepGlobe aerial image dataset. On the Gleason2019
histopathology dataset, our model achieves better segmentation accuracy for the two
most clinically important and ambiguous classes (Gleason Grade 3 and 4) than the
top performers in the challenge by 13.1% and 7.5%, and improves on the average
performance of 6 human experts by 6.5% and 7.5%. Our code and trained models
are available at https://github.com/lxasqjc/Foveation-Segmentation.

1 Introduction
Today, ultra-high resolution images are widely accessible to the computer vision community and
therefore there is an increasing demand for effective analysis. Such images are commonly used in
an array of scientific tasks, such as urban scene analysis with image size of 2048×1024 [1], geospatial
analysis with image size of 5000× 5000 [2] and histopathological images with image sizes up to
10,000×10,000 pixels [3]. In particular, semantic segmentation, a problem of assigning each pixel to
different semantic categories, forms an integral component of such analysis as it allows for a granular
understanding of the scenes. However, manual analysis of ultra-high resolution images is extremely
time-consuming, and is prone to false negative predictions due to the enormous image size, motivating
the development of automated methods.

Deep Learning (DL) based methods have been recently adopted to improve the segmentation of
high-resolution images. However, due to the high GPU memory requirements, modern DL models
∗These authors contributed equally.
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Figure 1: A validation segmentation example on CityScapes[1] under two trade-off configurations: BigPatch-
LowResolution case using patch size of 2048×1024 pixels and downsampling rate of 0.5 to original resolution;
SmallPatch-HighResolution case using patch size of 1024×512 pixels and no downsampling applied. Yellow
and red boxes highlight sub-areas containing coarse and fine scale context. The results show that our approach
combines the strength of both BigPatch on capturing coarse context and SmallPatch on capturing fine context.

with sufficient complexity cannot operate on the whole ultra-high resolution images in many practical
settings. To mitigate this issue, the images are typically dissected into smaller patches and/or
down-sampled to fit into the available GPU memory [3, 4, 5]. To exploit all the available GPU memory
thus requires one to trade-off the field of view (FoV) i.e., spatial extent of context, against the spatial
resolutions i.e., level of image detail. Tuning this trade-off exhaustively is expensive [6], and as a result,
it is commonly set based on crude developers’ intuitions. Moreover, as [6] points out, the optimal
trade-off is application or even image dependent (e.g., some parts of the images may require more
context than local details), and thus the existence of an “one-size-fits-all” FoV/resolution trade-off
for a given application is highly questionable.

A considerable amount of work has attempted to alleviate the issue of subjectivity in tuning this
trade-off by learning to merge multi-scale information, in both computer vision [7, 8] and medical
imaging [9]. Specifically, these approaches learn representations from multiple parallel networks and
then aggregate information across different scales before making the final prediction. DeepMedic[9]
is one pioneering example in this category, which consists of two parallel networks processing input
patches of different scales, and addresses the task of lesion segmentation in voluminous multi-modal
3D MRI data. Another example is [10], which is designed to work specifically with mega-pixel
histopathology images. In computer vision, the authors of [8] proposed a method for integrating
multi-scale information by enforcing global and local streams to exchange information with each other,
and attained the state-of-the-art performance on the segmentation of ultra-high resolution satellite
images. Another notable approach [7] uses the attention mechanism to softly weight the multi-scale
features at each pixel location, and demonstrate impressive performance on multiple challenging
segmentation benchmarks. However, these approaches share some limitations: 1) presence of multiple
parallel networks, which can be computationally expensive; 2) manual selection of a limited number
(2 or 3) of scales; 3) reliance on specific choices of neural network architecture.

In this work, we first demonstrate empirically on three public segmentation datasets of ultra-high
resolution images that the choice of the input patch configuration (i.e., FoV/resolution trade-off) indeed
considerably influences the segmentation performance. Secondly, motivated by this finding, we then
propose foveation module, a data-driven “data loader” that learns to provide the segmentation network
with the most informative patch configuration for each location in an ultra-high-resolution image.
Specifically, the foveation module processes a downsampled version of the given ultra high-resolution
image and estimates the distributions over multiple patches of different resolution/FoV trade-offs
at respective locations. This hierarchical approach to segmentation is inspired by the way in which
human annotators provide segmentation labels to an extremely large image — they saccade their gaze
through the whole image and zoom in at different locations with the appropriate amount in order to
acquire the required local and contextual information.

The foveation module can be trained jointly in an end-to-end fashion with the segmentation network to
optimise the task performance. Additionally, our foveation module, as a learnable/adaptive data-loader,
can be used to augment a wide range of existing segmentation architectures (as we show empirically).
We demonstrate the general utility of our approach using three public datasets from different domains
(Cityscape, DeepGlobe and Gleason2019 challenge dataset), where we show a light-weight implemen-
tation of the foveation module can boosts segmentation performance with little extra computational cost.
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2 Related Work
2.1 Multiscale Architectures
Multi-scale approaches [11, 7, 12] have achieved good performances in segmentation task by either
aggregating features at different layers or features of multiple inputs with different resolutions. Such
aggregation process is performed in either sequential or parallel fashion. A typical sequential approach
such as RefineNet [13] fuses features from multiple inputs of different resolutions progressively
starting from the lowest. Feature fusion can also be done in parallel. For example, U-net [14] directly
concatenates the low-level features from the encoder to the high-level features in the decoder via
skip connections. The contracting-expanding variants of U-net is very popular [15, 16, 4]. A similar
approach, called Feature Pyramid Network (FPN) [17] fuses the features in a hiearachical fashion
as in U-net, but makes predictions at respective feature levels and aggregates them into the final output.

Recently, the high-resolution network (HRNet) [18] was proposed to combine the merits of sequential
and parallel approaches and achieved the state-of-the-art performance on the CityScapes segmentation
dataset [1]. HRNet merges features at different scales in parallel, and then repeats this merge in a
sequential manner from higher resolution level. Another notable approach, specially designed to
segment ultra-high resolutions images is GlobalLocalNet(GLNet) [8], where the low-level features
from the massively downsampled input image and the high-level features from local patches of the
original resolution are aggregated in a spatially consistent fashion.

While the above approaches have demonstrated considerable performance, they still resort to the specific
designs of network architectures. In contrast, our approach can be used on a wide range of network
— we will demonstrate later the benefits of augmenting UPerNet [19] (an extension of FPN [17]) and
HRNet [18]. Furthermore, many of the above multi-scale methods use manually tuned combination of
the crop size (i.e., FoV) and resolutions of the input patches, or use a set of multiple randomly chosen
such combinations [4, 5, 18] to ensure good performance. Here we provide a systematic analysis to
confirm the considerable influence of these two factors on the segmentation performance, and present
a mechanism (foveation module) to infer the optimal patch configurations at different image locations.

2.2 Hierarchical vision systems
Region-proposal approaches for object detection tasks have shown that optimal region crops vary
spatially depending on local patterns. A typical region-proposal framework consists of a hierarchy
of tasks of 1) proposing region crops and 2) the downstream classification [20, 21] or segmentation
task of the cropped region [22]. Our approach shares a similar structure but differs in that the first
task proposes a set of desirable input patch configuration (FoV/resolution-tradeoff) at different image
locations to maximize downstream performance. Also our approach is end-to-end while typical
region-proposal approaches train the two hierarchical tasks separately for computational efficiency.
The approach that is closest to ours is “Learning to Zoom” in [23] where they introduce a learnable
module to change the resolution of the input images in a spatially varying way to emphasise the salient
parts of the data. However, such approach assumes that the task network still operates on the whole
downsampled image, limiting its applicability to ultra-high resolution images.

2.3 Processing ultra-high resolution images in computer vision
Most CNN-based approaches do not process images with size beyond 5122 in 2D or 643 in 3D [24, 25].
Non-uniform grid representation is becoming a common approach in computer vision to alleviate
the memory cost by modifying input images in a non-uniform fashion to improve efficiency, such
as meshes [26, 27], signed distance functions [28], and octrees [29]. Recently, Marin et al. [30]
proposed an efficient semantic segmentation network based on non-uniform subsampling of the input
image prior to processing with a segmentation network. However, these lines of work do not consider
optimising such representations to maximise the downstream task of interest. A related but alternative
strategy is proposed in [31] in which attention weights are learned over the input image to sample a
small informative subset for the downstream classification task. A similar approach was introduced in
[32] but based on the use of saliency maps for the task of breast cancer screening with high-resolution
mammography images. However, these works only addressed the problem of classification and is
not directly applicable to the segmentation task which requires all locations to be examined.

3 Methods
In this section, we first perform a motivation experiment to illustrate the impact of the patch
FoV/resolution trade-off on the segmentation performance and its spatial variation across the image.
Motivated by this finding, we then propose foveation module, a module that learns to provide
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the segmentation network with the most informative patch configuration for each location in a
ultra-high-resolution image.

3.1 Patch Configuration Matters in Segmentation

The first part of our work performs an empirical analysis to investigate a key question: “How does
the FoV/resolution of training input patches affect the final segmentation performance?”. To this end,
we use the following three ultra-high-resolution segmentation datasets from different domains.

Table 1: Dataset summary. More details in Supplementary Material

Dataset Content Resolution (pixels) Number of Classes

Cityscape [1] urban scenes 2048×1024 19
DeepGlobe [33] aerial scenes 2448×2448 6
Gleason2019 [34] histopathological 5000×5000 4

In the interest of space, we only show results on the Gleason 2019 histopathology dataset (see the
supplementary material for similar results on DeepGlobe[33] and Cityscape[1]). We first train a set of
different segmentation networks, each with a different combination of FoV and downsampling rate (i.e.,
resolution); see the small blue dots on the curve in Fig. 2(a)). We note that the maximum tensor size of
the input patch is capped at 10002 and constant along the curve in Fig. 2(a). The segmentation network
with the best performance for each class is highlighted in different shaped marks (see Fig. 2(a)). It
is clear that there is no “one-size-fits-all” patch configuration of the training data that leads to the
best performance overall and for all individual classes. Fig. 2(b) illustrates visually the variation of
the segmentation performance. In addition, even within each class, we find that the optimal patch
configuration can vary between different spatial locations as shown in Fig. 2(c). These observations
altogether imply that the standard patch sampling scheme with a pre-set FoV/Resolution trade-off
is sub-optimal, highlighting the potential benefits of a more intelligent strategy that can adaptively
select the patch of the most informative configuration to describe the local patterns at a given location.

Figure 2: Quantitative (a) and qualitative evidence that the optimal FoV/resolution trade-off varies over classes
(b) and locations (c). (a): segmentation networks trained with different trade-off configurations where best
performance for each class is highlighted (see Legends for references). (b): FoV decreases from left to right;
Downsampling rate increases from left to right. In each row, the best segmentation result among the five trade-off
configurations is highlighted, which corresponds to the trade-off configuration in (a). (c): An example under two
trade-off configurations: BigPatch-LowResolution case uses patch size of 50002 pixels and downsampling rate
of 0.2 to original resolution; SmallPatch-HighResolution case uses patch size of 20002 pixels and downsampling
rate of 0.5 to original resolution.
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3.2 Foveation Module for Adaptive Patch Configuration

Motivated by the above finding, we introduce foveation module, a data-driven patch sampling strategy
which selects, at each spatial location in an ultra-high resolution image, an appropriate configuration
(i.e., resolution and FoV) of the local patch that feeds into the segmentation network. The inspiration
for our method roots from the ways in which human experts segment high-resolution images — starting
from a low-resolution bird’s-eye view of the whole image 1, the annotators navigate their gaze through
different locations and zoom in to the right extent to collect both local and contextual information. The
magnification scale is controlled by, what is called, foveation (i.e., the process of adjusting the focal
length of the eye, the distance between the lens and fovea). The proposed adaptive patch-selection
scheme is akin to this process, and hence the name, foveation module. Foveation module can be seen as a
learnable “dataloader” that is optimised to maximise the performance of a given segmentation network.

Fig.3 provides a schematic of the proposed method. Foveation module takes a low-resolution version
of a mega-pixel input image and generates importance weights over a set of patches with varying
spatial FoV/resolution at different pixel locations. Then, the segmentation network processes the input
patches based on the outputs of the foveation module, and estimates the corresponding segmentation
probabilities. Note that the choice of this segmentation network only requires them to operate on
a single input patch/image—we will later demonstrate this by augmenting two recent and different
architectures, namely UPerNet [19] (Pyramid Pooling + FPN head) and HRNet [18].

Figure 3: Architecture schematic.

More specifically, for each mega-pixel image I ∈ RH×W×C where H, W, C denote the height,
width and channels respectively, we compute its lower resolution version Ilr ∈ Rh×w×C . We
also define a “patch-extractor” function PE(I, i) = {x(i)

1 (I), ...,x(i)
D (I)} that extracts a set of D

patches of varying field-of-view/resolution (but the same number of pixels) from the full resolution
image I centered at the corresponding ith pixel in Ilr (see Fig. 3 for a set of examples). Foveation
module, Fθ, parametrised by θ, takes the low-resolution image Ilr as the input and generates the
probability distributions Fθ(Ilr)∈ [0,1]h×w×D over patches PE(I,i) = {x(i)

1 ,...,x
(i)
D } at respective

spatial locations i ∈ {1,...,wh} in Ilr. In other words, the values of Fθ(Ilr) at the ith pixel define a
D-dimensional probability vector f (i)θ (Ilr) = [f

(i)
θ,1(Ilr),...,f

(i)
θ,D(Ilr)] over the extracted patches. We

then select the input patch by sampling from this patch distribution:

x(i)∼Categorical
(
f
(i)
θ (Ilr)

)
(1)

and feed it to the segmentation network, Sφ
(
x(i)
)
, parametrised by φ to estimate the corresponding

segmentation probabilities. We note here that the spatial extent of the predicted segmentation
corresponds to the area covered by the input patch with the smallest field of view in PE(I,i).

1Screen display or human vision typically have lower resolutions than that of the ultra-high resolution images
of interest in this work.
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During training, we would like to encourage the foveation module to output meaningful probabilities
over patches at different spatial locations. In particular, the patch probabilities are desired to reflect
the relative “informativeness” of different patch configurations at each location for the downstream
segmentation task. To this end, we jointly optimise the parameters {θ,φ} of both the foveation module
and the segmentation network to minimise the segmentation specific loss function,L(x(i);θ,φ) (e.g.,
cross entropy + L2-weight-decay). However, due to the non-differentiable nature of patch sampling
from discrete distributions, one cannot naively apply stochastic gradient descent. We devise and evaluate
several solutions as detailed in Sec. 3.3. We also note that, for computational efficiency, for each mega-
pixel image I, we randomly select a subset of pixels from its low resolution counterpart Ilr, compute
the corresponding input patches, feed them to the segmentation network and compute the losses.

At inference time, we segment the whole mega-pixel image x by aggregating predictions Sφ
(
x(i)
)

at different locations i. To speed up the inference, we also optionally downsample Fθ(Ilr) to reduce
the number of locations i over which to sample patches as explained in detail in Sec. 4.

3.3 Learning the Spatial Distribution of Patch Configurations

The sampling of input patches from discrete distributions in eq. (1) creates discontinuities giving the
objective functionL(x(i);θ,φ) zero gradient with respect to θ, the parameters of the foveation module.
We devise the following approximations to address this problem.

Gradient estimation with Gumbel-Softmax: In this approach, we approximate each discrete
distribution, Categorical(f (i)θ (Ilr)) by the so-called Concrete [35] or Gumbel-Softmax distribution
[36], denoted by GSM(f

(i)
θ (Ilr),τ). GSM is a continuous relaxation which allows for patch sampling,

differentiable with respect to the parameters θ of the foveation module through a reparametrisation
trick. The temperature term τ adjusts the bias-variance trade-off of gradient approximation; as the
value of τ approaches 0, samples from the GSM distribution become one-hot (i.e. lower bias) while the
variance of the gradients increases. In practice, we start at a high τ and anneal to a small but non-zero
value as in [36, 37, 38] as detailed in supplementary materials.

We have also experimented with another popular gradient estimator, REINFORCE [39]. The
early experiments suggested that the optimisation was challenging likely due to the well-known
high variance of the estimator. One could also use more sophisticated, unbiased estimators with
low-variance such as REBAR [40] and RELAX [41], but the GSM-based approximation (although
only unbiased in the limit of τ−→0) worked well for the initial experiments in this paper.

Mean Approximation: Instead of sampling patches at each pixel location i, we compute the average
input patch weighted by the estimated probabilities and feed it to the segmentation network:

E[x(i)]=

D∑
d=1

f
(i)
d (Ilr)·x(i)

d (I) (2)

Here f (i)d (Ilr) denotes the value of Fθ(xlr) at ith pixel, and quantifies the “importance” of the dth patch
at that location. With this approach, the objective function becomes fully differentiable with respect
to θ. Such mean approximations are commonly employed in the attention literature, and have shown
efficacy in different contexts e.g., the multi-instance learning for ultra-high resolution images [42]
and the “deterministic soft” attention for image captioning in [43].

Mode Approximation: We also experiment with the option to select the most probable patch:

Mode[x(i)]= argmax
x
(i)
d ∈PE(I,i)

(f
(i)
d (Ilr)) (3)

Since the gradient is not well-defined in this case, we approximate it with a straight-through estimator
[44] which directly copies the gradient from the preceding layer. Such an approach, while biased,
has also been shown effective in learning discrete representations in VAE-type generative models
of high-dimensional data [45] in the presence of an argmax function.
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4 Experiments and Results

In this section, we evaluate the performance of our foveation approach on three datasets against baselines
described in 4.1. We show that our foveation module can learn the spatial variation of optimal trade-offs
in 4.3, leading to better performance in 4.2. Different variants of our method i.e., Gumbel-softmax, mean
and mode approximations, are referred to as ‘Ours-GSM’, ‘Ours-Mean’ and ‘Ours-Mode’ respectively.

We employ the same training scheme unless otherwise stated. The foveation module is defined as
a small CNN architecture comprised of 3 convolution layers plus a softmax layer. The segmentation
network was defined as a deep CNN architecture, with HRNetV2-W48[18] used in Cityscape and
Gleason2019 dataset, and UPerNet [19] used in DeepGlobe dataset. In all settings, PE(I,i) extracts,
at each image location, a set of 5 patches of varying FoV/resolution-tradeoffs. Full details are provided
in Supplementary Material.

4.1 Baselines

We compare our method against a variety of baselines. Firstly, we consider the same segmentation
networks (HRNet or UPerNet), but trained on input patches of fixed FoV/resolution-tradeoffs—there
are five of them since we consider 5 different patch configurations. We also include the results from
ensembling these five baselines (“Ensemble”). To further investigate the benefits of learning the
probabilities over patch configurations, we also compare against the cases trained with randomly
sampled input configuration (“Random”) or the average input patches with equal weights (“Average”).
More details are in the Supplementary Material.

4.2 Quantitative and Qualitative Comparison

The quantitative comparison between our methods and the baselines is given in Table 2. We show
segmentation performance for all classes in DeepGlobe and Gleason2019 dataset, while only all
classes average is shown for Cityscape due to space limit (class-wise performance provided in
Supplementary Material instead). Table 2 shows that our methods (especially ‘ours-Mean’) generally
shows improvement over the baselines, illustrating the benefits of using more desirable FoV/Resolution
at each location. It’s also worth noting that 6% boost in mIoU is achieved for Cityscape. Fig. 4 & 5
illustrate these numerical improvements reflect meaningful differences in segmentation quality.

Our approach also achieves favourable results with respect to the published results. Firstly, Table 2
shows that our approach provides 2.4% boost over comparable SoTA [8] on the DeepGlobe dataset
with visually noticeable differences in segmentation quality as shown in Fig. 4), providing finer details
in the coastal area and less miss-classification of agriculture in sub-area (b). Secondly, on Gleason2019,
our model achieves better segmentation accuracy for the two most clinically important and ambiguous
classes (Gleason Grade 3 and 4) than the top performers in the challenge by 13.1% and 7.5%, and
improves on the average performance of 6 human experts by 6.5% and 7.5% (details are provided
in Supplementary Material).

Among the three different variants of our method, the mean approximation seems to be the most
effective approach, achieving top performance for most single class cases. This is likely due to the
optimisation since GSM and mode approximations rely gradient estimators. We do note, however,
that in some cases, GSM or mode approximations perform better than the mean approximation (e.g.
"Forest" and "Barren" in DeepGlobe of Table 2). The third row in Fig. 5 is a visual example on this point.

Figure 4: Qualitative comparison of our method versus the SoTA results given in GLnet [8], color code: yellow:
Agriculture; pink: Rangeland; blue: Water; white: Barren.
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Figure 5: Qualitative comparison of our method versus baselines, each row gives examples from different
datasets (row 1-2 from Cityscape, row 3 from Deepglobe, row 4 from Gleason2019); each column gives input
image, ground truth and sementation results. More examples are provided in Supplementary Material.

Dataset DeepGlobe Gleason2019 City.

Class All U. A. R. F. W. B. All Benign Grade 3 Grade 4 All

Baseline-Patch 1 73.8 79.4 88.2 45.1 77.2 87.4 65.4 69.3 81.0 61.8 65.0 70.2
Baseline-Patch 2 73.4 79.0 88.4 43.6 77.7 85.6 66.2 70.1 80.5 64.4 65.3 70.6
Baseline-Patch 3 56.4 57.0 81.4 27.8 62.3 69.1 40.7 70.7 81.0 64.9 66.1 69.8
Baseline-Patch 4 72.3 77.2 87.8 41.8 78.5 84.2 64.2 67.3 76.4 61.4 64.0 68.0
Baseline-Patch 5 71.3 76.9 87.0 39.6 79.1 83.0 62.2 61.4 67.5 55.6 61.0 67.7
Baseline-Random 46.4 56.3 77.0 20.1 41.0 45.8 38.5 64.9 72.2 58.6 63.8 50.3
Baseline-Average 73.5 78.4 88.1 45.0 80.8 82.3 66.7 65.7 78.8 52.2 66.0 56.6
Ensemble 74.3 79.4 88.7 44.5 80.0 86.3 66.8 71.0 80.8 65.4 66.9 72.5

Ours-Mean 74.0 79.5 88.7 45.2 77.6 86.4 66.6 71.1 82.4 63.0 67.8 76.1
Ours-Mode 73.2 77.5 88.2 43.4 79.9 84.4 65.5 69.5 81.6 61.3 65.6 70.5
Ours-GSM 73.8 78.4 88.5 44.7 80.1 84.4 66.8 67.4 79.4 58.3 64.4 71.4

GLnet [8] 71.6 - - - - - - - - - - -
Clinical experts [34] - - - - - - - 66.9 83.9 56.4 60.3 -

Table 2: Segmentation performance measured in IoU/mIoU (%) on DeepGlobe, Gleason2019, Cityscape (City.)
datasets. The best and the second best results are shown in red and blue. In last two rows, we quote GLnet result
for DeepGlobe dataset, and average of 6 expert annotation performance for Gleason2019 dataset as reference.
For class names in the second row, All referred to all classes average, and the rest single class codes are as follows:
DeepGlobe: U.-Urban, A.-Agriculture, R.-Rangeland, F.-Forest, W.-Water, B.-Barren

4.3 Evaluation of Foveation Module

In this section, we demonstrate that our foveation module can effectively learn spatial distribution of
the FoV/Resolution trade-off. To visualise the learnt trade-off at each location, we use the probability
predicted from foveation module f (i)θ (Ilr) at each ith pixel in Ilr to calculate the weighted average FoVs
of the given set of patches, which we refer to as “foveation map”. In order to measure the quality of such
foveation maps, we define a ‘Gold Standard’ by visualising the FoV of the most performant patch config-
uration amongst the baselines trained fixed patches. It is, however, worth noting that such gold standard
does not equate to the true optimal patch configuration of the given segmentation model and the dataset
since only a limited set of patch sizes are evaluated. Details are provided in Supplementary Materials.

Figure 6: Qualitative results on the foveation maps. Examples from the Cityscape (1st row) and DeepGlobe
(2nd row) are shown. ’Gold Standard’ referred to the mIoU weighted FoV map, and ’Ours-Mean’, ’Ours-GSM’
and ’Ours-Mode’ referred to as foveation output probability weighted FoV maps, i.e. foveation maps (FoVs
are normalised between 0-1). More diverse examples are provided in Supplementary Material.
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Table 3: Mean Squared Error (MSE) between map of mIoU and foveation output weighted average FoV, with
three ours approaches and over three datasets. Mean and standard deviation of MSE are calculated across all
validation images in each dataset.

Ours-Mean Approximation Ours-GSM Ours-Mode Approximation

Cityscape 0.084±0.043 0.082±0.038 0.184±0.048
DeepGlobe 0.171±0.076 0.146±0.063 0.149±0.055
Gleason2019 0.129±0.043 0.083±0.031 0.086±0.027

Fig. 6 visualises the foveation maps from different variants of our method on examples from two
datasets. In general, ‘Ours-Mean’ and ‘Ours-GSM’ predicted foveation maps visually similar to
the corresponding ’Gold Standard’, illustrating that the foveation module has generally learned to
provide higher resolution patches where needed. This aligns well with our motivation as explained
in Fig. 1, that single fixed path size is not optimal across different spatial locations. We also report the
mean-squared-error (MSE) between the learnt foveation and the gold standard in Table. 3. In general
the results are consistent with the qualitative observations shown in Fig. 6.

5 Conclusion
In this work, we propose a new approach for segmenting ultra-high resolution images. In particular, we
introduce foveation module, a learnable “dataloader” which, for a given image, adaptively provide the
downstream segmentation model with input patches of the appropriate configuration (FoV/resolution
trade-off) at different locations. Such dataloader is trained end-to-end together with the segmentation
model to maximise the task performance. We show our approach can improve performance consistently
on three public datasets. Our method is simple to implement, requiring simply the addition of the
foveation module to an existing segmentation network. A key limitation of the current approach is that
only a discrete set of patches are considered — future work aims to extend this to the continuous settings
by adapting the learnable deformation ideas such as [23, 46] to extremely high-resolution images.
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Supplementary Material:
Foveation for Segmentaiton of
Ultra-high Resolution Images

A Details of Datasets, Architectures, Training and Baselines

A.1 Datasets

In this work, we verified our method on three segmentation datasets: DeepGlobe aerial scenes
segmentation dataset [33], CityScape urban scenes segmentation dataset [1] and Gleason2019 medical
histopathological segmentation dataset [34].

The DeepGlobe [33] dataset has 803 high-resolution (2448×2448 pixels) images of aerial scenes.
There are 7 classes of dense annotations, 6 classes among them are used for training and evaluation
according to [33]. We randomly split the dataset into train, validate and test with 455, 207, and 142
images respectively.

The CityScape [1] dataset contains 5000 high-resolution (2048×1024 pixels) urban scenes images
collected across 27 European Cities. The finely-annotated images contain 30 classes, and 19 classes
among them are used for training and evaluation according to [1]. The 5000 images from the CityScape
are divided into 2975/500/1525 images for training, validation and testing.

The Gleason2019 [34] dataset contains 322 high-resolution (5000×5000 pixels) medical histopatho-
logical images. Each image is finely-annotated by a subset of 6 annotators (all experts), which
annotates each pixel into one from four classes (Benign, Gleason Grade 3,4,5). Preprocessing for
emprical analysis: A subset of 298 training examples have been used in the first part of our work.
We fuse 6 annotations into 1 using pixel-level probabilistic analysis by STAPLE [47]. Each image
is paired with 1 STAPLE fused annotation as gold standard (to be used as ground truth during training
and evaluation). Pre-processing for foveation experiments: on top of 298 pre-processed images in
empirical analysis, we extract the central part of input images of size 2448×2448 pixels from the
original histology images to ensure input images have constant size.

A.2 Network Architectures and Implementation Details

Architectures: The foveation module is defined as a small CNN architecture comprised of 3
convolution layers, each with 3×3 kernels follower by BatchNorm and Relu. The number of kernels
in each respective layer is {40,40,5}. A softmax layer is added at the end. All convolution layers are
initialised following He initialization [48]. The Segmentation module was defined as a deep CNN
architecture , with HRNetV2-W48 [18] applied in Cityscape and Gleason2019 dataset, and UPerNet
[19] applied in DeepGlobe dataset (details provided in the original literature). The segmentation
network HRNetV2-W48 is pre-trained on Imagenet dataset as provided by the author [18].
Foveation module specific: In all settings, Patch-Extractor PE(I, i) extracts, at each location
i, a set of 5 patches at different FoVs of {5002, 10002, 15002, 20002, 25002} for DeepGlobe,
{5122,6402,7682,8962,10242} for Cityscape and {11002,20002,29002,38002,44002} for Glea-
son2019), all patches in each dataset are downsampled to the same size as smallest patch in the original
resolution. When generating low-resolution counterparts Ilr, downsampling rates of 1/24, 1/16, 1/44
are applied for DeepGlobe, Cityscape and Gleason2019 respectively, for both training and inference,
unless otherwise stated.

Minibatch construction: In our experiments, each minibatch of size P consists of a set ofB patches
extracted from each of L different mega-pixel images (i.e., P =L∗B). More specifically, for each
mega-pixel image I, we select a subset ofB locations from its low resolution counterpart Ilr and extract
patches from them. Therefore for a set ofLmega-pixel images, a total number of P =L∗B patches
are sampled and passed to the segmentation network. We keep the total number of patches, P fixed
in each dataset (P =8 for DeepGlobe and Cityscape, and P =2 Gleason2019) to max out the available
GPU resources, while we selected the combination ofB andL according to the validation performance
for each model instance.
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A.3 Training

For all experiments, we employ the same training scheme unless otherwise stated. We optimize
parameters using Adam [49] with initial learning rate of 2e10−5 and β=0.9, and train for 50 epochs
on DeepGlobe and Gleason2019 dataset, and 100 epoches on Cityscape dataset. Following prior
works [50], we adopt ‘poly’ learning rate policy and the power is set to 0.9. We set maximum
iteration number to 410K for experiments on the DeepGlobe dataset, 595K for Cityscapes and 95K
for Gleason2019. Segmentation networks are trained on 2 or 4 GPUs with syncBN. The temperature
term τ in the Gumbel-Softmax gradient estimator is annealed by scheduler τ=max(0.10,exp(−rt))
as recommended in [36], where r is the annealing rate and t is the current training iteration. We used
r=1/’total iteration number’ for our models.

A.4 Baselines

For each of the three datasets, we compare our method against a variety of baselines. Firstly, we
consider the same segmentation networks (HRNet or UPerNet), but trained on input patches of fixed
FoV/resolution-tradeoffs. Each case was implemented by setting the outputs of the foveation module
Fθ(xlr) to a fixed one-hot vectors, thus selecting only one scale per baseline from the given set of 5
patches. Additionally, on DeepGlobe and Gleason2019 datasets, to illustrate our foveation approach
do better than random guess or uniform average, two additional baselines are also applied: a uniform
random one-hot baselines that randomly select one from the given set of 5 patches with varying
FoV/resolution, and an average baseline that assign equal probability f (i)d of 1/5 over the set of 5
patches with varying FoV/resolution. Lastly, to examine the robustness of our approach, we also
calculate the performance of the ensemble model by averaging the five one-hot baseline predictions.

B Additional Results

B.1 Patch Configuration Matters in Segmentation

To further illustrate the impact of the patch FoV/resolution trade-off on the segmentation performance
and its spatial variation across the image. Fig. B.1.1 shows the results of the same motivational
experiment as in the main text Fig. 2(a), but on the DeepGlobe and Cityscape datasets. For each data
set, we first train a set of different segmentation networks, each network with a different combination
of FoV and downsampling rate (i.e., resolution); see the small blue dots on the curve in Fig. B.1.1.
We note that the maximum tensor size of the input patch is capped at 5002 for DeepGlobe and 5122

for Cityscape, and constant along the curve in Fig. B.1.1. The segmentation network with the best
performance for each class is highlighted in different shaped marks (see Fig. B.1.1). It shows again that
there is no “one-size-fits-all” patch configuration of the training data that leads to the best performance
overall and for all individual classes.

Figure B.1.1: Quantitative evidence that the optimal FoV/resolution trade-off varies over classes
on (a) DeepGlobe dataset and (b) Cityscape dataset: segmentation networks trained with different
trade-off configurations where best performance for each class is highlighted (see Legends for
references). Cityscape class code: 0-road, 1-sidewalk, 2-building, 3-wall, 4-fence, 5-pole, 6-traffic
light, 7-raffic sign, 8-vegetation, 9-terrain, 10-sky, 11-person, 12-rider, 13-car, 14-truck, 15-bus,
16-train, 17-motorcycle, 18-bicycle.
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B.2 Additional Quantitative Comparison on Cityscape and Gleason 2019

The class-wise segmentation performance on Cityscape are given in Table B.2.1 and Table B.2.2.
These results show that our approach improved fixed patch size baselines by large margin for both
overall average mIoU (+6%) and most single class IoU.

Dataset Cityscape

Class All road sidewalk building wall fence pole traffic light raffic sign vegetation

Baseline-Patch 1 67.7 97.6 80.8 89.8 49.7 51.4 53.9 39.0 63.3 89.6
Baseline-Patch 2 68.0 97.3 81.0 89.5 41.9 52.2 51.5 32.9 66.0 89.2
Baseline-Patch 3 69.8 97.5 81.2 90.3 47.0 55.8 54.2 46.8 68.6 90.0
Baseline-Patch 4 70.6 97.0 82.1 89.8 47.3 53.4 57.6 56.9 72.1 90.3
Baseline-Patch 5 70.2 95.0 84.4 90.3 45.6 56.2 63.4 61.4 76.5 91.4
Baseline-Random 50.3 94.1 68.1 80.7 36.5 40.2 18.8 13.3 31.8 79.6
Baseline-Average 56.6 96.3 73.6 85.7 31.6 40.4 39.0 19.8 49.8 86.5
Ensemble 72.5 97.7 83.8 91.1 51.7 58.2 58.9 50.9 72.6 90.9

Ours-Mean 76.1 98.2 84.9 92.3 55.2 61.4 64.5 71.4 80.1 92.5
Ours-Mode 71.4 97.5 80.8 90.8 45.4 55.3 55.6 56.5 67.7 90.7
Ours-GSM 70.5 97.7 82.2 89.1 44.8 55.4 64.5 66.1 76.2 91.8

Table B.2.1: Segmentation performance measured in mIoU (%) for all 19 classes and IoU(%) for the first 9
classes on Cityscape datasets. The best and the second best results are shown in red and blue.

Dataset Cityscape

Class terrain sky person rider car truck bus train motorcycle bicycle

Baseline-Patch 1 59.4 90.4 73.9 51.6 91.9 54.9 74.0 61.3 45.3 69.1
Baseline-Patch 2 55.9 90.1 75.3 55.4 92.0 54.1 80.2 74.8 43.7 69.8
Baseline-Patch 3 57.4 88.8 77.1 56.9 92.8 57.4 76.8 63.6 51.5 72.5
Baseline-Patch 4 56.7 85.6 79.0 60.0 92.8 54.0 78.2 58.1 56.8 74.2
Baseline-Patch 5 59.9 68.9 81.2 58.0 93.2 53.0 69.6 50.6 59.3 76.8
Baseline-Random 50.7 58.4 53.8 34.4 79.1 49.3 46.3 37.8 31.2 51.6
Baseline-Average 47.5 89.3 65.7 43.6 89.0 47.6 45.7 38.6 23.2 61.6
Ensemble 60.9 90.9 79.4 60.1 93.2 57.1 79.6 69.0 56.4 74.8

Ours-Mean 64.2 94.1 82.8 64.0 94.5 63.6 81.0 63.3 59.2 78.2
Ours-Mode 60.8 92.1 75.5 55.8 93.1 66.0 76.4 69.9 54.5 71.6
Ours-GSM 62.1 75.1 80.8 60.8 92.8 53.4 74.8 42.6 52.9 76.6

Table B.2.2: Segmentation performance measured in mIoU (%) for all 19 classes and IoU(%) for the last 10
classes on Cityscape datasets. The best and the second best results are shown in red and blue.

As declared in Section 4.2, on Gleason2019 data set, we compare with published results as follows:
we compare ours approaches with the top 2 results on the Gleason2019 challenge leaderboard
(https://gleason2019.grand-challenge.org/Results/) ranked by overall all classes
average segmentation accuracy. We also collect highest segmentation accuracy of each classes as
a third Single-Class-Best case for comparison. We quantify segmentation performance via pixel
accuracy for each class, to be consistent and comparable against results released on the leaderboard.
It worth to note that for all results, we remove Gleason Grade 5 in evaluation it is under represented
- only 2% pixels in the given dataset. The results are shown in Table B.2.3, where our model achieves
better segmentation accuracy against the top performers in the challenge for the two most clinically
important and ambigous classes (Gleason Grade 3 and 4) by 13.1% and 15.7%.

Table B.2.3: Gleason2019: Quantitative comparison to challenge leaderboard results measured by
single class pixel accuracy. Best performance of each class is highlighted.

Experiment Benign Grade 3 Grade 4

Our-Mean Approximation 88.3 83.8 78.1
Our-GSM 87.6 78.9 81.3
Our-Mode Approximation 85.2 71.5 86.3
Overall Top1 95.9 2.24 16.5
Overall Top2 83.0 52.7 54.0
Single-Class-Best 95.9 70.7 70.6
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B.3 Additional Qualitative Comparison

More qualitative segmentation examples are given in Fig. B.3.1 for Cityscape data set, Fig. B.3.2 for
DeepGlobe data set and Fig. B.3.3 for Gleason2019 data set.

Figure B.3.1: More segmentation examples on Cityscape

Figure B.3.2: More segmentation examples on DeepGlobe

B.4 Evaluation of Foveation Module

Here we give details on calculating foveation map and the performance weighted ’Gold standard’.
For one input image I, at each ith pixel in Ilr, we use the foveation output, a D-dimensional probability
vector f (i)θ (Ilr) = [f

(i)
θ,1(Ilr), ...,f

(i)
θ,D(Ilr)], to weight average the given D FoVs (corresponds to the

given set of D patches), referred to as weighted average FoVs. To visualise the spatial distribution
of FoV/Resolution Trade-off, we calculate and plot weighted average FoVs over all location in Ilr and
refer it as the "foveation map". For consistency and better visualisation, we apply minimum-maximum
normalisation to 0-1 based on the smallest and largest FoV in the given set of D patches, where 1
indicting largest FoV-lowest resolution, and 0 indicting smallest FoV-highest resolution.

We also use the similar strategy to visualise FoVs weighted by performance (mIoU). Specifically, at
each ith pixel in Ilr, we use the segmentation performance (mIoU)m(x(i);φ) from the five fixed patch
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Figure B.3.3: More segmentation examples on Gleason2019

baselines to weight average the FoVs of the given set of patches and plot in the same way as foveation
map, which is referred to as ’Gold Standard’ to compare with foveation map. It is worth noting that
this ’Gold Standard’ is not real ground truth as only limited patch size are evaluated.

Fig. B.4.1, Fig. B.4.2 and Fig. B.4.3 gives diverse examples of visual comparison between performance
weighted ’Gold Standard’ to "foveation maps" generated with ours approaches.

Figure B.4.1: More qualitative results of the foveation maps on Cityscape
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Figure B.4.2: More qualitative results of the foveation maps on DeepGlobe
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Figure B.4.3: More qualitative results of the foveation maps on Gleason2019
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To show foveation module is effectively learning, we plot foveation map at different training epoches,
Fig. B.4.4 shows the same example as main text Fig.4 from DeepGlobe dataset and it shows 1)
foveation module is progressively refining the learnt spatial distribution of FoV/resolution trade-off;
2) the third row of Fig. B.4.4 explains why our foveation approach perform better than GLnet at
sub-image (b) as shown in Fig.4, because it shows foveation module learnt to invest small patch at
high resolution over coastal areas to capture fine scale context to avoided miss classify it as forest
which sharing similar green colour as sea in the input image, as GLnet do.

Figure B.4.4: Foveation map for one validation image shown in main text Fig.4 at three epoches.
Minimum-maximum normalisation applied, where 1 indicting largest FoV-lowest resolution, and
0 indicting smallest FoV-highest resolution.
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B.5 Sensitivity to Hyper-parameters

Here we first evaluate the sensitivity of our approach to the resolution of Fθ(Ilr) at inference time on
CityScape dataset, since it forms the most significant computational bottleneck in our approach. Here
we apply the same downsampling rate of 1/16 to get Fθ(Ilr) at training time, while at inference time
evaluate all models at different downsampling rate to get Fθ(Ilr), with mIoU measured on validation
given in Table B.5.1. In general, Table B.5.1 shows 1) the validation mIoU are increasing with increasing
resolution of Fθ(Ilr); 2) ours approaches gain more mIoU boost with increasing resolution of Fθ(Ilr).
To better visualise the results, Fig. B.5.1 plotted Table B.5.1, it shows 1) foveated approachs gain more
than fixed patch size baselines on mIoU as resolution of Fθ(Ilr) increasing; 2) the gain start converge at
downsampling rate of 1/128, at which evaluation time could be reduced to 1/64 comparing to at highest
resolution with downsampling rate of 1/16, thus dramatically improve our inference efficiency.

Experiments/Fθ(Ilr) downsample rate 1/512 1/256 1/128 1/64 1/16

Baseline-5122 0.659 0.685 0.697 0.700 0.702
Baseline-6402 0.665 0.690 0.700 0.704 0.706
Baseline-7682 0.667 0.689 0.694 0.696 0.698
Baseline-8962 0.649 0.669 0.677 0.679 0.680
Baseline-10242 0.642 0.663 0.670 0.672 0.677

Ours-Mean Approximation 0.707 0.750 0.761 0.760 0.761
Ours-GSM 0.626 0.691 0.699 0.703 0.705
Ours-Mode Approximation 0.671 0.699 0.712 0.712 0.714

Table B.5.1: Cityscape dataset (HRnet-Backbone), column 2-4: 19 classes mean IoU at epoch 100 evaluated
with different resolutions of xlr; row 2-6: 5 one-hot baselines; row 7-9: our our foveation approach with different
sampling approximates.

Figure B.5.1: Sensitivity study on the resolution of low-resolution input to the foveation module applied during
evaluation on Cityscape dataset, 19 classes mIoU evaluated at epoch 100
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C Pseudo-codes

Here we provide pseudo-codes of our method for the case where each mini-batch is constructed based
on a single mega-pixel image (i.e., L=1 as described in Sec. A.2). We also intend to clean up the
whole codebase and release in the final version.

Algorithm 1 Joint Optimisation of Foveation Module and Segmentation Network

Training data: D={In,Yn}Nn=1

Initialize the parameters {θ,φ} of foveation module and segmentation Network

For t∈T iterations, randomly sample a pair of an images and a label fromD: I∈RH×W×C , Y∈RH×W

Downsample input images: Ilr∈Rh×w×C

Run Foveation module: Fθ(Ilr)∈ [0,1]h×w×D

Select randomly a small subset of pixel locations in Ilr: B⊂{1,...,wh}

For pixel i∈B in Ilr:

Extract patches from I at location i:

PE(I,i)={x(i)
1 (I),...,x(i)

D (I)}

Extract the corresponding annotation of the smallest patch x
(i)
1 (I) from Y:

PE
′
(Y,i)={y(i)

1 (Y)}

Sample the candidate patch based on foveation module output:

x(i)∼Categorical
(
f
(i)
θ (Ilr)

)
Feed the selected patch to segmentation network:

Sφ
(
x(i))

Compute loss and update parameters via a gradient descent:

{θ,φ}←−{θ,φ}−λ·∇θ,φ
[ 1

|B|
∑
i∈B

L(Sφ
(
x(i)),y(i)

1 ;θ,φ)
]
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