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Abstract. Machine learning models commonly exhibit unexpected fail-
ures post-deployment due to either data shifts or uncommon situations
in the training environment. Domain experts typically go through the
tedious process of inspecting the failure cases manually, identifying fail-
ure modes and then attempting to fix the model. In this work, we aim
to standardise and bring principles to this process through answering
two critical questions: (i) how do we know that we have identified mean-
ingful and distinct failure types?; (ii) how can we validate that a model
has, indeed, been repaired? We suggest that the quality of the identified
failure types can be validated through measuring the intra- and inter-
type generalisation after fine-tuning and introduce metrics to compare
different subtyping methods. Furthermore, we argue that a model can
be considered repaired if it achieves high accuracy on the failure types
while retaining performance on the previously correct data. We combine
these two ideas into a principled framework for evaluating the quality
of both the identified failure subtypes and model repairment. We eval-
uate its utility on a classification and an object detection tasks. Our
code is available at https://github.com/Rokken-lab6/Failure-Analysis-
and-Model-Repairment.
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1 Introduction

It is common for new failures to be discovered once a model has been deployed
in the “wild”. While recent lines of research in medical imaging have shown
promising results in designing robust machine learning (ML) models [1–5], it may
not be realistic to achieve perfect generalisation to every relevant environment.
c© Springer Nature Switzerland AG 2021
M. de Bruijne et al. (Eds.): MICCAI 2021, LNCS 12903, pp. 509–518, 2021.
https://doi.org/10.1007/978-3-030-87199-4_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87199-4_48&domain=pdf
https://github.com/Rokken-lab6/Failure-Analysis-and-Model-Repairment
https://github.com/Rokken-lab6/Failure-Analysis-and-Model-Repairment
https://doi.org/10.1007/978-3-030-87199-4_48


510 T. Henn et al.

Consequently, recently published guidelines for the reliable application of ML
systems in healthcare [6,7] and recent work from Luke et al. [8] stress the impor-
tance of analyzing and reporting clinically relevant failure cases. However, there
is a lack of standardised protocols to identify, validate and analyze those failure
types. Typically, domain experts manually inspect the failure cases and make
sense of them by identifying a set of failure modes. But this approach can be
both expensive and biased by the human expertise. For example, a critical yet
rare subgroup could be missed with such an approach and go unreported [8]. A
notable recent work [9] recognises this issue and makes a first step towards data-
driven approaches to failure subtyping through clustering of the learned features
based on whether its presence or absence is predictive of poor performance. How-
ever to date, little attention has been gathered around the evaluation metrics of
the identified failure types, hampering the development of new methods in this
direction. Furthermore, even if a set of meaningful failure types could be identi-
fied, methods for fixing them and evaluating its success remain undeveloped.

In an attempt to bring principles to the process of failure analysis and model
repairment, we introduce a framework for not only deriving subtypes of failure
cases and measuring their quality, but also repairing the models and verifying
their generalisation. We put forward a set of desirable properties that a meaning-
ful set of failure subtypes should meet and design surrogate metrics. Moreover,
we propose a data-driven method for identifying failure types based on clus-
tering in feature or gradient spaces. This method was able not only to identify
failure types with the highest quality according to our metrics but also to iden-
tify clinically important failures like undetected catheters close to the ultrasound
probe in intracardiac echocardiography. Finally, we argue that model repairment
should not only aim to fix each failure type in a generalizable manner but also
to ensure the performance on previously successful cases is retained.

2. Model Repair
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Fig. 1. An overview of the proposed failure analysis and model repairment framework
which proceeds in two phases. Firstly, based on the evaluation of the model M, the
set of “failure cases” F (e.g., misclassified cases, examples with high errors, etc.) are
clustered to identify failures types {Fi}i such that F = ∪iFi. Secondly, the failure
types {Fi}i are “fixed” by a repairment algorithm (e.g., fine-tuning, continual learning
methods, etc.) based on a “training split” of the failure sets {F tr

i }, and the correct set
Ctr. Finally, the success of the repairment is evaluated by measuring generalisation on
the test sets of target failure types {F te

i } and the correct cases Cte.
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2 Methods

We elaborate below the two phases (see Fig. 1) of our approach to model repair.

2.1 Phase I: Identification of Failure Types

It is not evident how to optimally separate failure cases into a set of distinct fail-
ure types. Domain experts could split the failure cases according to the visual
appearance or consider the importance of different failures from a clinical per-
spective, for example according to stages or clinical signs of a disease. However,
we suggest clinical relevance doesn’t necessarily reflect the way the model dis-
tinctly fails on each failure type. Failure types should be specific not only to
the model but the repairment methods that can be used to fix them. Moreover,
objective metrics to quantify the quality of failure types for the purpose of model
repairment are still lacking.

Two Desiderata of Failure Types: We postulate that a set of failure types
should satisfy two desirable properties: Independence and Learnability. In addi-
tion, we propose two novel surrogate metrics to assess those properties in prac-
tice. They are measured by fine-tuning the model M on a subset F tr

i of the
given failure type Fi under a Compatibility constraint, and then calculating the
performance on each F te

j . We assume a sufficiently large set of failures with no
label noise or corrupted images.

(i) Independence: The subtypes should be as independent as possible from each
other in the way the model fails. In other words, they can be fixed by com-
paratively distinct alterations to the decision boundary. If two types are inde-
pendent, a model fine-tuned on one type should not be useful to the other.
In practice, we suggest a continuous measure of Independence by calculat-
ing the average difference in the test performance between each failure type
and the rest: I(Fi) := meanj �=i

(
m(Mi,F te

i ) − m(Mi,F te
j )

)
where m(·) is a

performance metric (e.g., accuracy).
(ii) Learnability: Each subtype should be homogeneous and consists of examples

for which the model has failed in a similar way. In other words, a such failure
type contains failure cases that can be fixed via a similar modification to
the model’s decision boundary. If a subtype is heterogeneous, fixing it would
require more modifications to the model and would be more challenging. We
thus posit that a more homogeneous failure type would be easier to learn,
and measure Learnability as the generalisation of the fine-tuned model Mi

on the chosen failure type L(Fi) := m(Mi,F te
i ).

Compatibility Constraint: We argue in addition that the above surrogate metrics
should be measured with the constraint of maintaining performance on correct
data C. This is necessary to avoid learning pathological discriminative rules just
to solve a specific failure type. For example, given a failure type only containing
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images of a single class, the model could simply learn to ignore the input images
and predict the same class everywhere, in which case the failure is fixed in a
meaningless way. Compatibility ensures “locality” of the failure types by ensuring
the required changes in the discriminative rules do not considerably influence the
previous cases. Compatibility is achieved by fine-tuning on both a failure type
F tr

i and previously correct cases Ctr in equal proportions and early stopping
when Ctr validation performance drops below 0.9.

Automatic Identification of Failure Types: Manual analysis can often be
time-consuming but also suboptimal, potentially overlooking meaningful failure
modes. Therefore, we wish to automatically uncover a set of failure types with
good Independence and Learnability scores. We thus also explore two methods as
specific instantiations of our framework; particularly, we experiment with clus-
tering the failure cases F in the feature space (Feature clustering) and gradient
space of a differentiable model M (Gradient clustering). The gradients of the
loss with respect to the parameters are used (for object detection: the loss spe-
cific to the object). We expect that similar data will be close in the feature space
and the failures whose correction requires similar changes to the model parame-
ters will be close in the gradient space. Furthermore, features are averaged over
spatial dimensions and both features and gradients are reduced by Gaussian
random projection followed by UMAP [10] to 10 dimensions. Finally, the data is
clustered through k-means with the highest Silhouette score between 3 and 10
clusters.

2.2 Phase II: Repairment of Failure Types

Once a set of target failure types has been identified, the model needs to be
repaired. We argue that a successful repairment leads to a model that generalizes
on unseen cases of the target failure types while maintaining performance on the
cases C where the model previously performed well. First, a target set of failure
types FT ⊂ {Fi}i is selected by the end-users, and then each type is split into
two sets, where one is used to first repair the model (e.g. F tr

i ) and then the
other is used to evaluate generalization (e.g. F te

i ). For repairment procedures,
we experiment with fine-tuning on the failure types (with or without the correct
cases) and elastic weight consolidation (EWC), a popular continual learning
approach [11]. We note, however, that more recent model adaptation approaches
are also applicable in our framework such as more recent variants of continual
learning [12,13], meta-learning [14] and domain adaptation [15].

3 Datasets and Implementation Details

We evaluate the efficacy of the proposed model repairment framework on two
medical imaging datasets. The details of the respective datasets along with the
specification of models/optimisation are provided below.
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Binary PathMNIST (BP-MNIST) is a publicly available classification
dataset consisting of colorectal cancer histology slides patches [16,17] derived
originally from the NCT-CRC-HE-100K [17] dataset and resized to 3 × 28 × 28
as a part of the MedMNIST benchmark [16]. We simplify the original 9-way clas-
sification task into a binary task of discriminating benign and malignant classes
(cancer-associated stroma and colorectal adenocarcinoma epithelium) and use
the original classes of granular tissue types as metadata to interpret the discov-
ered failure types. Moreover, 40% of the dataset was put into the test set to
increase the sample size for the evaluation of both subtyping and model repair-
ment. Finally, the model was trained with Adam with a learning rate of 10−4

in combination with early stopping on the validation accuracy. The architecture
is a version of VGG [18] with 6 convolutional layers starting at 16 channels and
the fully connected layer replaced by a 1× 1 convolution to two output channels
and a spatial average.

ICE Catheter Detection (ICE-CD) is a private real-world object detection
dataset comprised of ultrasound images of intra-cardiac catheters made by a
Intracardiac Echocardiography (ICE) device on pigs. Furthermore, for the pur-
pose of evaluating the performance of catheter detection models, each catheter
image was classified into different types representing known difficult situations
based on catheter appearance or position. In addition, information about the
rough anatomical locations of the probe is available as metadata. The architec-
ture is composed of 5 residual blocks of two convolutional layers (starting at 8
channels and doubling up to 128 channels) followed by two 1× 1 convolutions
branches: a classification and a center position regression branch. This dataset
has been acquired in accordance with animal experiment regulations.

4 Experiments and Results

4.1 Comparison of Failure Subtyping Methods

Baselines and Experiments: we aim to quantify the quality of the pro-
posed automatic subtyping methods (see Table 1 and Fig. 2) which we com-
pare against several baselines: Random (random clusters), False positives and
negatives (FP/FN) (two clusters) and Metadata (BP-MNIST: the original 9 tis-
sue types; ICE-CD: image types as identified by the clinicians and in addition
anatomical locations of the images). For each failure type Fi, the model was
fine-tuned on both F tr

i and the correct cases Ctr (to satisfy Compatibility). Early
stopping is performed with the best validation score (accuracy on BP-MNIST
and F1 on ICE-CD) on F tr

i while maintaining 0.9 validation accuracy on Ctr.
Table 1 displays the average metrics for the respective methods while Fig. 2 shows
granular results i.e., matrix m(Mi,F te

j ) which denotes the test accuracy on F te
j

of the model fine-tuned on F tr
i .

Analysis: first of all, Gradient clustering reached better scores than any other
method with the exception of Independence for FP/FN clustering on BP-
MNIST. However, it had a 18% higher Learnability score and is more informative
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with more identified failure types. Remarkably, Gradient clustering was better
than using Metadata, including the ICE-CD metadata made through very time
consuming visual inspection. In the case of BP-MNIST, the lack of independence
of Metadata subtyping was clearly visible in Fig. 2(a). This implies that Gradi-
ent clustering might be able to identify independent failure types which are not
obvious through human eyes but are relevant to the model. On the other hand,
Feature clustering seemed to achieve lower scores than metadata. Furthermore,
Gradient clustering might achieve higher Learnability and Independence due to
being more aligned with the repairment method. Finally, Random resulted in by
far the lowest independence scores as is apparent in Fig. 2(c) where all types had
the same score. This shows that the Independence metric is effective in detecting
when failure types are mixed together. Moreover, Random and FP/FN cluster-
ing showed lower Learnability which may be explained by the diversity of tasks to
be learned within each cluster. However, FP/FN had the highest Independence
due to matching the two classes.

Table 1. Comparison of methods for failure types identification on both BP-MNIST
and ICE-CD. The best and the second best results are shown in red and blue.

BP-MNIST (ACC) Catheter Detection (ACC)

Method Learnability Independence Learnability Independence

Random 0.42±0.01 0.00±0.02 0.65±0.02 0.01±0.01

False positives and negatives 0.74±0.22 0.74±0.22 0.69±0.14 0.14±0.37

BP-MNIST: tissue type 0.92±0.05 0.58±0.16 - -

ICE-CD: image type - - 0.77±0.17 0.46±0.16

ICE-CD: anatomical location - - 0.75±0.22 0.37±0.20

Feature clustering 0.79±0.25 0.52±0.23 0.83±0.06 0.36±0.07

Gradient clustering 0.92±0.04 0.69±0.04 0.83±0.12 0.48±0.18

Fig. 2. Accuracy of fine-tuning on each failure type on BP-MNIST according to tissue
types (a) and gradient clustering (b) and on ICE-CD according to random clustering
(c) and gradient clustering (d). The lack of independence is apparent for tissue types
(a) and random clustering (c) while a diagonal pattern is noticeable in (b) and (d).

4.2 Analysis of Automatically Discovered Failure Subtypes

We aim to inspect the automatically discovered subtypes on BP-MNIST and
ICE-CD by Gradient clustering which achieved the best scores.
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Binary PathMNIST (BP-MNIST): first, we observe that False positives
and false negatives were mostly separated into two sets of clusters (i.e., each
cluster contains mostly either circles or crosses as shown in Fig. 3(a)). Moreover,
the two malignant tissue types were recovered separately: Cluster 2 and 4 for
cancer-associated stroma and cluster 1 for colorectal adenocarcinoma epithelium.
Secondly, even within one tissue type, Gradient clustering was able to discover
independent failure types. Cluster 2 and 4 both focused on cancer-associated
stroma but were relatively independent and differed when evaluating on F1, F2

and F4 (See Fig. 2.). In addition, clusters 2 and 4 were visually different as seen in
Fig. 3 with cluster 4 corresponding to darker less textured images. Finally, only
cluster 8 seemed to contain normal colon mucosa (in addition to Debris) and
does seem to contain darker textured images than other false positive clusters.

Fig. 3. Inspection of failure types obtained through gradient space clustering for
BP-MNIST. (a) UMAP embedding coloured by failure types. (b) UMAP embedding
coloured by tissue types. (c) Distribution of tissue types within each failure type. (d)
Example images for remarkable failure types. Failures F2 and F4 which contain the
same tissue but different visual appearances are identified as two different types.

Catheter detection (ICE-CD): Gradient clustering was able to recover a
known and important but under-represented failure type: Cluster 4 (red cluster
in Fig. 4(a)) focused on Near-probe catheters which are close to the ultrasound
probe. Indeed, these catheters are hard to detect due to noise in this region
of the images. Secondly, Gradient clustering was able to automatically discover
some of the anatomical locations. Indeed, Cluster 6 (brown cluster in Fig. 4(a))
focused on the LAA and Cluster 3 (green cluster in Fig. 4(a)) focused mostly on
the SVC/IVC. Finally, Gradient clustering was able to separate false positives
(see the orange cluster in Fig. 4(a)) from false negatives (the others).

4.3 Model Repairment

Experiments: we aim to evaluate how much failure types performance can
be improved while retaining performance on correct cases (See Table 2). We
compare several repairment approaches on both datasets based on fine-tuning
and EWC [11]. The fine-tuning is done on either a single failure type: F tr

i or
all: F = ∪iF tr

i . Also, we compare to using Ctr with a 50% sample ratio. For
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Fig. 4. Inspection of the failure types obtained through gradient space clustering for
ICE-CD. UMAP embedding coloured by failure types (a) and by image types (b).
(c) Example images for each subtype. (d) Distribution of image types and anatomical
locations within each subtype. (e) Proportions of failure types over each combination of
anatomical location and image types coloured by failure type. Two outstanding failure
types are F2 focusing on “false positives” and F4 focusing on “Near-probe” cases.

all methods, early stopping is performed by selecting the best accuracy on F tr
i .

Models were fine-tuned with a learning rate of 10−6 on BP-MNIST and 10−4 on
ICE-CD and weight decay of 10−3. Table 2 reports the accuracy on the test set
of each failure type F te

i , the previously correct cases Cte and the overall test set.

Analysis: first, fine-tuning on a single failure type F tr
i generalized more on

that specific failure type than fine-tuning on all incorrect cases F tr at once (see
Table 2). This may indicate that the failure types are conflicting during fine-
tuning and it is more difficult to simultaneously learn a diverse set of cases
than simple ones. Therefore, if learning unimportant failures is conflicting with
critical ones, it makes sense to first start by repairing a carefully selected sub-
set of the failures. Secondly, fine-tuning on the failures only couldn’t maintain
performance on Cte while including the correct cases Ctr helped to preserve
performance. Fine-tuning on F tr

i ∪ Ctr for ICE-CD dropped to 0.73 but this
was still higher than 0.32 if using only F tr

i for fine-tuning. Finally, while for
EWC [11] the performance on correct cases didn’t drop as much as simple fine-
tuning, EWC wasn’t able to maintain correct cases accuracy to more than 0.27
and 0.51.
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Table 2. Comparison of model repairment methods on BP-MNIST (top) and ICE-
CD (bottom) evaluated on failure types obtained in gradient space (ACC). Methods
retaining at least 0.85 accuracy on C are shown in green and those that do not in red.

Method (BP-MNIST) F te
1 F te

2 F te
3 F te

4 F te
5 F te

6 F te
7 F te

8 Cte All

Pre-repairment 0 0 0 0 0 0 0 0 1.0 0.91

Fine-tuning on a single F tr
i 0.92 0.94 0.97 1.00 0.99 0.94 0.96 0.92 0.81 0.77

Fine-tuning on F tr
i ∪ Ctr 0.91 0.93 0.92 0.97 0.99 0.89 0.88 0.89 0.91 0.86

Fine-tuning on F = ∪iF tr
i 0.4 0.79 0.72 0.83 0.87 0.71 0.82 0.78 0.19 0.24

EWC [11] on F tr 0.34 0.65 0.79 0.79 0.85 0.64 0.79 0.76 0.27 0.30

Fine-tuning on F tr ∪ Ctr 0.25 0.65 0.71 0.66 0.80 0.48 0.69 0.68 0.9 0.88

Method (ICE-CD) F te
1 F te

2 F te
3 F te

4 F te
5 F te

6 − − Cte All

Pre-repairment 0 0 0 0 0 0 − − 1 0.59

Fine-tuning on a single F tr
i 0.85 0.99 0.77 0.69 0.64 0.96 − − 0.32 0.36

Fine-tuning on F tr
i ∪ Ctr 0.81 0.97 0.79 0.96 0.67 0.97 − − 0.73 0.64

Fine-tuning on F = ∪iF tr
i 0.61 0.9 0.71 0.28 0.57 0.72 − − 0.64 0.66

EWC [11] on F tr 0.41 0.89 0.59 0.26 0.47 0.94 − − 0.51 0.56

Fine-tuning F tr ∪ Ctr 0.41 0.8 0.65 0.39 0.61 0.82 − − 0.86 0.78

5 Conclusion

We have introduced a principled framework to address the problems of failure
identification, analysis and model repairment. Firstly, we put forward a set of
desirable properties for meaningful failure types and novel surrogate metrics to
assess those properties in practice. Secondly, we argued that model repairment
should not only aim to fix the failures but also to retain performance on the pre-
viously correct data. Finally, we showed specific instantiations of our framework
and demonstrated that clustering in feature and gradient space can automati-
cally identify clinically important failures and outperform manual inspection.
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